中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (10): 1781-1794 DOI: 10.7536/PC130119 Previous Articles   Next Articles

Nano-Magnetosomes in Magnetotactic Bacteria

Pan Yu1,2, Li Na1, Zhou Runhong1, Zhao Min1   

  1. 1. College of Life Sciences,Northeast Forestry University,Harbin 150040,China;
    2. College of Environment and Chemical Engineering,Heilongjiang University of Science and Technology,Harbin 150022,China
  • Received: Revised: Online: Published:
PDF ( 1095 ) Cited
Export

EndNote

Ris

BibTeX

Magnetotactic bacteria can orient and migrate along geomagnetic field lines because of their intracellular single-domain magnetic nano-crystal particles with biomembrane bounded,which are referred as magnetosomes. Magnetite Fe3O4 is the main chemical component of magnetosomes characterized by the high chemical purity, fine grain size uniformity, and good biocompatibility, which can be used as a new kind of nano-magnetic materials applied in many fields of biochemistry, magnetic materials, clinical medicine and wastewater treatment, and so on. Magnetosome formation is the mineralization process under strict biochemical mechanisms control, including four steps: iron accumulation, membrane formation, transportation and controlled biomineralization of Fe3O4. In this paper, the characteristics of magnetotactic bacteria, chemical composition, structure, synthesis conditions and mechanisms, magnetism, separation and purification, the applications of the nano-magnetic particles are summarized and reviewed. The main problems to be resolved and the prospects of magnetosomes are also presented.

Contents
1 Introduction
2 Magnetotactic bacteria
3 Chemical composition and morphology of magnetosomes
3.1 Chemical composition of magnetosomes
3.2 Morphology of magnetosomes
4 Synthetic conditions and biochemical mechanisms of magnetosomes
4.1 Synthetic conditions of magnetosomes
4.2 Synthetic processes and mechanisms of magnetosomes
5 Magnetic properties of magnetosomes in magnetotactic bacteria
5.1 Magnetic properties of magnetosomes
5.2 Effect of chains arrangement on magnetic properties
5.3 Effect of morphology and chemical composition on magnetic properties
6 Separation and purification of magnetosomes
7 Applications of magnetosomes in ralated fields
7.1 Application in sewage treatment
7.2 Application in medical treatment
7.3 Application in sensing technology
8 Biological and geoscience significance of biomineralization
9 Conclusions

CLC Number: 

[1] Blakemore R P. Science, 1975, 190: 377—379
[2] Bazylinski D A, Heywood B R, Mann S. Nature, 1993, 366: 218
[3] Bazylinski D A, Frankel R B, Jannasch H W. Nature, 1988, 334: 518—519
[4] Blakemore R P, Frankel R B, Kalmijn A J. Nature, 1980, 236: 384—385
[5] DeLong E F, Frankel R B, Bazylinski D A. Science, 1993, 259: 803—806
[6] Dunin-Borkowski R E, McCartney M R, Frankel R B, Bazylinski D A, Posfai M, Buseck P R. Science, 1998, 282: 1868—1870
[7] Farina M, Esquivel D M S, Lins de Barros H G P. Nature, 1990, 343: 256—258
[8] Fassbinder J W E, Stanjek H, Vali H. Nature, 1990, 343: 161—163
[9] Frankel R B, Blakemore R P, Wolfe R S. Science, 1979, 203: 1355—1356
[10] Frankel R B, Blakemore R P, Torres de Araujo F F, Esquivel D M S, Danon J. Science, 1981, 212: 1269—1270
[11] Glasauer S, Langley S, Beveridge T J. Science, 2002, 295: 117—119
[12] Lovley D R, Stolz J F, Nord G L, Phillips E J P. Nature, 1987, 330: 252—254
[13] Maher B A, Taylor R M. Nature, 1988, 336: 368—370
[14] Mandernack K W, Bazylinski D A, Shanks W C, Bullen T D. Science, 1999, 285: 1892—1896
[15] Mann S, Frankel R B, Blakemore R P. Nature, 1984, 310: 405—407
[16] Mann S, Sparks N H C, Frankel R B, Bazylinski D A, Jannasch H W. Nature, 1990, 343: 258—260
[17] Matsuda T, Endo J, Osakabe N, Tonomura A, Arii T. Nature, 1983, 302: 411—412
[18] Petersen N, Dobeneck T V, Vali H. Nature, 1986, 320: 611—615
[19] Pósfai M, Buseck P R, Bazylinski D A, Frankel R B. Science, 1998, 280: 880—883
[20] Sakaguchi T, Burgess J G, Matsunaga T. Nature, 1993, 365: 47—49
[21] Stolz J F, Chang S B R, Kirschvink J L. Nature, 1986, 321: 849—850
[22] Scheffel A, Gruska M, Faivre D, Linaroudis A, Plitzko J M, Schüler D. Nature, 2006, 440: 110—114
[23] Komeili A, Li Z, Newman D K, Jensen G J. Science, 2006, 311: 242—246
[24] PanY X, Petersen N, Winklhofer M, DavilaA F, Liu Q S, Friderichs T, Hanzlik M, Zhu R X. Earth Planet Sci. Lett., 2005, 232(1/2): 109—123
[25] Okamura Y, Takeyama H, Matsunaga T. Applied Biochemistry and Biotechnology, 2000, 84/86: 441—446
[26] Yavuz C T, Prakash A, Mayo J T, Colvin V L. Chem. Eng. Sci., 2009, (64): 2510—2521
[27] Knopp D, Tang D, Niessner R. Anal. Chim. Acta, 2009, 647: 14—30
[28] Bazylinski D A, Frankel R B. Nature Reviews Microbiology, 2004, 2: 217—230
[29] Alphandery E, Lijeour L, Lalatonne Y, Motte L. Sensors and Actuators B: Chemical, 2010, 147: 786—790
[30] Aguilar-Arteaga K, Rodriguez J A, Barrado E. Analytica Chimica Acta, 2010, 674: 157—165
[31] Matsunaga T, Suzuki T, Tanaka M, Arakaki A. Trends Biotechol., 2007, 25: 182—188
[32] Dutz S, Clement J H, Eberbeck D, Gelbrich T, Hergt R, Muller R, Wotschadlo J, Zeisberger M. J. Magnetism and Magnetic Materials, 2009, 321: 1501—1504
[33] Ambashta R D, Sillanpaa M. Journal of Hazardous Materials, 2010, 180: 38—49
[34] Benzerara K, Miot J, Morin G, Ona-Nguema G, Skouri-Panet F, Ferard C. C. R. Geoscience, 2011, 343: 160—167
[35] Li J H, Pan Y X, Liu Q S, Zhang K, Menguy N, Che R, Qin H, Lin W, Wu W, Petersen N, Yang X. Earth and Planetary Science Letters, 2010, 293: 368—376
[36] Gould J L, Kirschvink J L. Deffeyes K S. Science, 1978, 201: 1026—1028
[37] Walcott C, Gould J L, Kirschvink J L. Science, 1979, 205: 1207—1029
[38] Torres de Araujo F F, Pires M A, Frankel R B, Bicudo C E M. Biophys. J., 1986, 50: 385—378
[39] Kirschvink S. Nature, 1997, 390: 339—340
[40] Kirschvink J L, Kobayashi-Kirschvink A, Woodford B J. Proc. Natl. Acad. Sci. U. S. A., 1992, 89: 7683—7687
[41] Perez-Gonzalez T, Jimenez-Lopez C, Neal A, Rull-Perez F, Rodriguez-Navarro A, Fernandez-Vivas A, Pareja E. Geochimica. Cosmochimica Acta, 2010(74): 967—979
[42] Blackmore R P. Ann. Rev. Microbiol., 1982, 36: 217—238
[43] Blakemore R P, Maratea D, Wolfe R S. J. Bacteriol., 1979, 140: 720—729
[44] Schüler D, Kohler M. Zentralblatt für Mikrobiologie, 1992, 147, 150—151
[45] Matsunaga T, Sakaguchi T, Tadokoro F. Applied and Microbiology Biotechnology, 1991, 35: 651—655
[46] Schüler D, Spring S, Bazylinski DA. System Appl. Microbiol., 1999, 22: 466—471
[47] Moench T T. Antonie Van Leeuwenhoek, 1988, 54: 483—496
[48] Meldrum F C, Mann S, Heywood B R, Frankel R B, Bazylinski D A. Proceedings of the Royal Society of London Series B-Biological Science, 1993, 251: 237—242
[49] Fan G C, Li R S, Li X G, Gao M Y, Jia R F. Chinese Science Bullentin, 1996, 41(11): 944—948
[50] 卫杨保(Wei Y B), 张洪霞(Zhang H X), 姜伟(Jiang W). 武汉大学学报(自然科学版)(Wuhan University Journal of Natural Sciences), 1994, 6: 115—120
[51] 吴小铃(Wu X L), 都有为(Du Y W). 南京大学学报(自然科学版) (Nanjing University Journal of Natural Sciences), 1999, 35(6): 745—749
[52] 范国昌(Fan G C), 钱凯先(Qian K X), 李荣森(Li R S), 贾蓉芬(Jia R F). 生物学杂志(Journal of Biology), 1998a, 15(5): 11—14
[53] 贾蓉芬(Jia R F), 彭先芝(Peng X Z), 高梅影(Gao M Y), 戴顺英(Dai S Y). 第四纪研究(Quaternary Sciences), 2003, 23(5): 537—545
[54] 高梅影(Gao M Y), 戴顺英(Dai S Y), 刘艳丽(Liu Y L), 彭可凡(Peng K F), 贾蓉芬(Jia R F). 应用与环境生物学报(Chinese Journal of Applied and Environmental Biology), 2004, 10(2): 194—196
[55] Liu Y L, Gao M Y, Dai S Y, Peng K F, Jia R F. Materials Science & Engineering: C, 2006, 26: 597—601
[56] Li W, Yu L, Zhou P, Zhu M. Arch. Microbiol, 2007, 188: 97—102
[57] Lefèvre C T, Bernadac A, Yu-Zhang K, Pradel N, Wu L F. Environ. Microbiol., 2009, 11: 1646—1657
[58] Zhu K, Pan H, Li J, Zhang K, Zhang S, Zhang W, Zhou K, Yue H, Pan Y X, Xiao T, Wu L F. Research in Microbiology, 2010, 161: 276—283
[59] Petermann H, Bleil U. Earth and Planetary Scienc Letters, 1993, 117: 223—228
[60] Simmons S L, Bazylinski DA, Edwards K J. Science, 2006, 311: 371—374
[61] Farina M, Lins de Barros H G P, Esquivel D M S, Danon J. Biol. Cell, 1983, 48: 85—88
[62] Rogers F G, Blakemore R P, Blakemore N A, Frankel R B, Bazylinski D A, Maratea D, Rodgers C. Arch. Microbiol., 1990, 154: 18—22
[63] Bazylinski D A, Frankel R B, Heywood B R, Mann S, King J W, Donaghay P L, Hanson A K. Appl. Environ. Microbiol., 1995, 61: 3232—3239
[64] Bazylinski D A, Frankel R B. Environmental Microbe-Mineral Interactions. Lovley D R, Ed. Washington: ASM Press, 2000. 109—144
[65] Patricia M D, James J D, Steve W. The Mineralogical Society of America, 2003, 217—249
[66] Heywood B R, Bazylinski D A, Garratt-Reed A J. Naturwiss., 1990, 77: 536—538
[67] Towe K M, Moench T T. Earth Planet Sci. Lett., 1981, 52: 213—220
[68] Bazylinski D A, Garratt-Reed A J, Abedi A, Frankel R B. Arch. Microbiol., 1993, 160: 35—42
[69] Gorby Y A. Nature, 1998, 386: 108—121
[70] Arakaki A, Webb J, Matsunaga T. J. Biol. Chem., 2003, 278: 8745—8750
[71] Lin W, Pan Y X. Appl. Environ. Microbiol., 2009(75): 4046 —4052
[72] Devouard B, Posfai M, Hua X, Bazylinski D A, Frankel R B, Buseck P R. American Mineralogist, 1998, 83: 1387—1398
[73] Diaz—Ricci J C, Kirschvink J L. J. Geophys. Res., 1992, 97: 17309—17315
[74] Schüler D, Frankel R B. Applied and Microbiology Biotechnology, 1999, 52: 464—473
[75] Faivre D, Schüler D. Chem. Rev., 2008, 108: 4875—4898
[76] Schüler D, Baeuerlein E. J. Bacteriol., 1998, 180: 159—162
[77] Schüler D, Baeuerlein E. Arch. Microbiol., 1996, 166: 301— 307
[78] Blakemore R P, Short K A, Bazylinski D A, Rosenblatt C, Frankel R B. Gemicrobiol. J., 1985, 4: 53—71
[79] Pasfai M, Moskowitz B M, Arata B, Schüler D, Christine F, Bazylinski DA, Frankel R B. Earth and Planetary Science Letters, 2006, 249: 444—455
[80] Han L, Li S, Yang Y, Zhao F G, Huang J, Chang J. Journal of Magnetism and Magnetic Materials, 2007, 313: 236—242
[81] Paoletti L C, Blakemore R P. Curr. Microbiol., 1988, 17: 339 —342
[82] Noguchi Y, Fujiwara T, Yoshimatsu K, Fukumori Y. J Bacteriol., 1999, 181: 2142—2147
[83] Lefèvre C T, Abreu F, Lins U, Bazylinski D A. Metal Nanoparticles in Microbiology, 2011, 75—102
[84] Cox B L, Popa R, Bazylinski D A, Lanoil B, Douglas S, Belz A. Geomicrobiol., 2002, 19(4): 387—406
[85] Roberts A P, Florindo F, Villa G, Liao C, Jovane L, Bohaty S M, Larrasoana J C, Heslop D, Fitz Gerald J D. Earth and Planetary Science Letters, 2011, 310: 441—452
[86] Boyd P W, Ellwood M J. Nat. Geosci., 2010, 3: 675—682
[87] Yang C D, Takeyama H, Tanaka T, Matsunaga T. Enzyme and Microbial Technology, 2001, 29: 13—19
[88] Roberts A P. Earth and Planetary Science Letters, 1995, 134: 227—236
[89] Naresh M, Gopinadhan K, Sekhar S, Juneja P, Sharma M, Mittal A. IEEE Trans. Magn., 2009, 45(10): 4861—4864
[90] Paoletti L C, Blakemore R P. J. Bacterial., 1986, 167(1): 73—76
[91] Calugay R J, Okamura Y, Wahyudi A T, Takeyama H, Matsunaga T. Biochemical and Biophysical Research Communications, 2004, 323: 852—857
[92] Stintzi A, Barnes C, Xu J, Raymond K N. Proc. Natl. Acad. Sci. U. S. A., 2000, 97: 10691—10696
[93] Gorby Y A, Beveridge T J, Blakemore R P. J. Bacteriol., 1988, 170(2): 834—841
[94] Grunberg K, Muller E C, Otto A, Reszka R, Linder D, Kube M, Reinhardt R, Schüler D. Appl. Environ. Microbiol., 2004, 70: 1040—1050
[95] Matsunaga T, Okamura Y. Trends in Microbiol., 2003, 11(11): 536—541
[96] Okamura Y, Takeyama H, Matsunaga T. J. Biol. Chem., 2001, 276(51): 48183—48188
[97] Nakamura C, Kikuchi T, Burgess J G. J. Biochem., 1995, 118: 23—27
[98] Komeili A, Vali H, Beveridge T J, Newman D K. Proc. Natl. Acad. Sci. U. S. A., 2004, 101(11): 3839—3844
[99] Schubbe S, Kube M, Scheffel A, Wawer C, Heyen U, Meyerdierks A, Madkour M H, Mayer F, Reinhardt R, Schüler D. J. Bacteriol., 2003, 185: 5779—5790
[100] Paulsen IT, Saier M. H. J. Membr. Biol., 1997, 156: 99—103
[101] Li L, Kaplan J. J. Biol. Chem., 1997, 272: 28485—28493
[102] Grunberg K, Wawer C, Tebo B M, Schuler D. Applied and Environmental Microbiology, 2001, 67(10): 4573—4582
[103] Frankel R B, Papaefthymiou G C, Blakemore R P. Biochimica and Biophysica Acta, 1983, 763: 147—159
[104] Pan Y X, Petersen N, Winklhofer M, Davila A F, Liu Q S, Frederichs T, Hanzlik M, Zhu R X. Earth Planet. Sci. Lett., 2005, 237(3/4): 311—325
[105] Naresh M, Das S, Mishra P, Mittal A. Biotechnol. Bioeng., 2012, 109(5): 1205—1216
[106] Tsuyoshi T, Matsunaga T. Biosensors Bioelectronics, 2001, 16: 1089—1094
[107] Heyen U, Schüler D. Appl. Microbiol. Biotechnol., 2003, 61(5/6): 536—544
[108] Wang Y, Gao H, Sun J, Li J, Su Y, Ji Y, Gong C. Desalination, 2011, 270: 258—263
[109] Song H, Li X, Sun J, Yin X, Wang Y, Wu Z. J. Chem. Eng., 2007, 15: 847—854
[110] Chang C F, Lin P H, Holl W. Colloids Surf. A, 2006, 280: 194—202
[111] Tseng J Y, Chang C Y, Chen Y H, Chang C F, Chiang P C. Colloids Surf. A, 2007, 295: 209—216
[112] Uheida A, Iglesias M, Fontàs C, Hidalgo M, SalvadóV, Zhang Y, Muhammed M. J. Colloid Interface Sci., 2006, 301: 402—408
[113] Nilanjana D. Hydrometallurgy, 2010, 103: 180—189
[114] Bahaj A S, Jams P A B, Moeschler F D. Wat. Sci. Tech., 1998, 38(6): 311—317
[115] Sugaware K, Yugami A, Kuramitz H. Anal. Bioanal. Chem., 2009, 395: 767—772
[116] Li Y C, Lin Y S, Tsai P J, Chen C T, Chen W Y, Chen Y C. Anal. Chem., 2007, 79: 7519—7525
[117] Chen H, Liu S, Yang H, Mao Y, Deng C, Zhang X, Yang P. Proteomics, 2010, 10: 930—939
[118] Matsunaga T, Hashimoto K, Nakamura N. J. Appl. Mierobiol. Biotechnol., 1989, 31: 401—405
[119] Kaneta Y, Tsukazaki K, Kubushiro K, Sakayori M, Ueda M, Nozawa S. Oncology Reports, 2000, 7(5): 1099—1106
[120] Dzarova A, Royer F, Timko M, Jamon D, Kopcansky P, Kovac J, Choueikani F, Gojzewski H, Rousseau J. Journal of Magnetism and Magnetic Materials, 2011, 323: 1453—1459
[121] Li J, Song S, Li D, Su Y, Huang Q, Zhao Y, Fan C. Biosens. Bioelectron., 2009, 24: 3311—3315
[122] Matsunaga T, Kamiya S. J. Appl. Mierobiol. Biotechnol., 1987, 26: 328—332
[123] Matsunaga T, Kawasaki M, Yu X, Tsujimura N, Nakamura N. Anal. Chem., 1996, 68: 3551—3554
[124] Jia R F, Peng X Z. Mater. Sci. Engin. C, 2006, 26: 593—596
[125] Simmons S L, Edwards K J. Microbiol. Monogr., 2007, 3: 78—102
[126] Buseck P R, Dunin-Borkowski R E, Devouard B, Frankel R B, McCartney M R, Midgley P A, Posfai M, Weyland M. Proc. Natl. Acad. Sci. U. S. A., 2001, 98(24): 13490—13495
[127] Iida A, Akai J. Japan Sci. Rep. Niigata Univ., Ser. E(Geology), 1996, 11: 43—66
[128] Popa R, Fang W, Nealson K H, Souza-Egipsy V, Berquó T S, Banerjee S K. Penn L R. Int. Microbiol., 2009, 12(1): 49—57
[129] Kirschvink J L, Chang S B R. Geology, 1984, 12: 559—562
[130] Frankel R B, Buseck P R. Current Opinion in Chemical Biology, 2000, 4(2): 171—176
[131] Friedmann E I, Wierzchos J, Ascaso C, Winklhofer M. Proc. Natl. Acad. Sci. U. S. A., 2001, 98(5): 2176—2181
[132] Thomas-Keprta K L, Clemett S J, Bazylinski D A, Kirschvink J L, Mckay D S, Wentworth S J, Vali H, Gibson E K, Mckay M F, Romanek C S. Proc. Natl. Acad. Sci. U. S. A., 2001, 98: 2164—2169
[133] McKay C P, Friedmann E I, Frankel R B, Bazylinski D A. Astrobiology, 2003, 3(2): 263—270
[134] McKay D S, Gibson E K Jr, Thomas-Keprta K L, Vali H, Romanek C S, Clemett S J, Chillier X D F, Maechling C R, Zare R N. Science, 1996, 273: 924—930
[135] Thomas-Keprta K L, Clemett S J, Bazylinski D A, Kirschvink J L, Mckay D S, Wentworth S J, Vali H, Gibson E K Jr, Romanek C S. Appl. Environ. Microbiol., 2002, 68: 3663—3672
[136] Weiss B P, Kim S, Kirschvink J L, Kopp R E, Sankaran M, Kobayashi A, Komelil A. Proc. Natl. Acad. Sci. U. S. A., 2004, 101: 8281—8284
[137] Sakai S, Jige M. Island Arc., 2006, 15: 468—475
[138] Komeili A. FEMS Microbiol. Rev., 2012, 36(1): 232—255
[139] 陈彦平(Chen Y P), 郭芳芳(Guo F F), 姜伟(Jiang W), 李颖(Li Y). 东南大学学报(医学版)(Journal of Southeast University(Medical Science Edition)), 2011, 30(1): 47—51
[140] Bazylinski D, Williams T. Micro. Monogr., 2007, 3(9): 37—75
[141] Baumgartner J, Faivre D. Prog. Mol. Subcell. Biol., 2011, 52(11): 3—27
[142] Murat D, Quinlan A, Vali H, Komeili A. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(12): 5593—5598
[143] Tanaka M, Mazuyama E, Arakaki A, Matsunaga T. J. Biol. Chem., 2011, 286(8): 6386—6392
[144] 高峻(Gao J), 肖天(Xiao T), 孙松(Sun S). 高技术通讯(High Technology Letters), 2004, 14(5): 44—47
[145] 高峻(Gao J), 宋涛(Song T), 潘红苗(Pan H M). 高技术通讯(High Technology Letters), 2005, 15(8): 107—110
[146] Li J H, Pan Y X, Chen G J. Geophys. J. Int., 2009, 177: 33—42
[147] Moskowitz B M, Frankel R B, Bazylinski D A. Earth Planet. Sci. Lett., 1993, 120(3/4): 283—300
[148] Moskowitz B M, Bazylinski D A, Egli R. Geophys. J. Int., 2008, 174: 75—92
[149] Fischer H, Mastrogiacomo G, Lffler J F, Warthmann R J, Weidler P G, Gehring A U. Earth Planet. Sci. Lett., 2008, 270 (3/4): 200—208
[150] Prozorov T, Palo P, Wang L J, Nilsen-Hamilton M, Jones D A, Orr D, Mallapragada S K, Narasimhan B, Canfield P C, Prozorov R. ACS Nano, 2007, 1(3): 228—233
[151] Kopp R E, Weiss B P, Maloof A C, Vali H, Nash C Z, Kirschvink J L. Earth Planet. Sci. Lett., 2006, 247(1/2): 10—25
[152] Gehring A U, Kind J, Charilaou M, García-Rubio I. Earth Planet. Sci. Lett., 2011, 309(1/2): 113—117
[153] Alphandéry E, Ngo A T, Lefevre C. J. Phys. Chem. C, 2008, 112: 12304—12309
[154] Alphandéry E, Faure S, Raison L, Duguet E A, Howse P, Bazylinski D A. J. Phys. Chem. C, 2011, 115 (1): 18—22
[155] Staniland S, Williams W, Telling N, van Der Laan G, Harrison A, Ward B. Nature Nanotechnology, 2008, 3: 158—162
[156] Pan Y, Lin W, Tian L, Zhu R, Petersen N. Geomicrobiol. J. 2009, 26(5): 313—320
[157] Wei J D, Knittel I, Lang C, Schüler D, Hartmann U. J Nanopart. Res., 2011, 13(8): 3345—3352
[158] Alphandéry E, Faure S, Seksek O, Guyot F, Chebbi I. ACS Nano, 2011, 5 (8): 6279—6296
[159] Simpson E T, Kasama T, Pósfai M, Buseck P R, Harrison R J, Dunin-Borkowski R E. J. Phys: Conf. Ser., 2005, 17: 108—121
[160] Oldfield F. J. Geophys. Res., 1994, 99: 9045—9095
[1] Yanhua Sang, Haihua Pan, Ruikang Tang. Condensed-Matter Chemistry in Biomineralization [J]. Progress in Chemistry, 2020, 32(8): 1100-1114.
[2] Yang Haocheng, Chen Yifu, Ye Chen, Wan Lingshu, Xu Zhikang. Advances in Porous Organic-Inorganic Composite Membranes [J]. Progress in Chemistry, 2015, 27(8): 1014-1024.
[3] Wang Ben, Tang Ruikang*. Biomineralization: One Promising Bridge between Inorganic Chemistry and Biomedicine [J]. Progress in Chemistry, 2013, 25(04): 633-641.
[4] Ouyang Jianming*, Zhang Guangna, Wang Fengxin, Li Junjun. Nucleation, Growth, and Aggregation of Nanocrystallites in Urine of Calcium Oxalate Stone Patients as well as Kidney Stone Formation [J]. Progress in Chemistry, 2013, 25(04): 642-649.
[5] Liu Chuang, Wang Yuangui, Geng Jiaqing, Jiang Zhongyi, Yang Dong. Biosynthesis of Inorganic Nanoparticles [J]. Progress in Chemistry, 2011, 23(12): 2510-2521.
[6] Wu Congmeng, Wang Xiaoqiang, Zhao Kang, Cao Meiwen, Xu Hai, Lü Jianren. AFM Study of Calcite Growth and Dissolution on the (104) Face [J]. Progress in Chemistry, 2011, 23(01): 107-124.
[7] Ouyang Jianming, Yang Rue, Tan Jin. Effect of Renal Epithelial Cell After Injury on Biomineralization of Calcium Oxalate [J]. Progress in Chemistry, 2010, 22(08): 1665-1671.
[8] Cai Guobin|Guo Xiaohui|Yu Shuhong**. Polymer Controlled Biomimetic Mineralization [J]. Progress in Chemistry, 2008, 20(0708): 1001-1014.
[9] Xu Xurong|Cai Anhua|Liu Rui|Pan Haihua|Tang Ruikang**. Amorphous Calcium Carbonate in Biomineralization [J]. Progress in Chemistry, 2008, 20(01): 54-59.
[10] Ou Yangjianming**. Research Progress in Lattice Matching and Electrostatic Compatibility in Growth of Biominerals Induced by Monolayers [J]. Progress in Chemistry, 2005, 17(05): 931-937.
[11] Ouyang Jianming**. Biominerals and Their Mineralization Process [J]. Progress in Chemistry, 2005, 17(04): 749-756.
[12] Ou Yangjianming**,Chen Dezhi. The Growth of Biomineral Crystals Modulated by Self-Assembled Monolayers [J]. Progress in Chemistry, 2005, 17(03): 563-572.
[13] Mao Chuanbin,Li Hengde,Cui Fuzhai,Feng Qingling,Wang Hao. Biomimetic Synthesis of Inorganic Materials [J]. Progress in Chemistry, 1998, 10(03): 246-.