中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (10): 1703-1712 DOI: 10.7536/PC130117 Previous Articles   Next Articles

Synthesis and Application of Nitrogen-Containing Carbon Nanomaterials by Ionic Liquids as Novel Precursors

Lai Qingxue, Zhang Xiaogang, Liang Yanyu   

  1. College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received: Revised: Online: Published:
PDF ( 1090 ) Cited
Export

EndNote

Ris

BibTeX

As novel precursors in fabrication of carbon nanomaterials, ionic liquids have attracted much attention due to their remarkable properties, such as low toxicity, nonvolatility, processing flexibility, high stability and flexible designability. Even though the mechanism of carbonization, especially the formation of mesopores is not clear, ionic liquid-based carbon nanomaterials have been successfully applied in different fields, such as fuel cells, lithium ion batteries and supercapacitors. In this paper the advantages and structure requirements of ionic liquids as nitrogen-containing carbon precursors and the main factors about nitrogen content have been elaborated. The recent progress of ionic liquids in synthesizing nitrogen-containing carbon nanomaterials (including mesoporous carbon, carbon nanofibers and auxiliary carbon nanomaterials) has been presented. Furthermore template-free synthesis of nitrogen-containing mesoporous carbon by employing ionic liquids as precursors has been particularly introduced. The influence factors of the formation of mesopores, such as the cross linking, carbonization conditions, composition of precursors and pore defects, have been systematically discussed.

Contents
1 Introduction
2 The requirements of the structures of ionic liquids as precursors of nitrogen-containing carbon nanomaterials and the main factors of nitrogen content
2.1 The requirements of the structures of ionic liquids
2.2 The main factors of nitrogen content
3 The synthesis of nitrogen-containing carbon nanomaterials with different structures by ionic liquids as novel precursors
3.1 The synthesis of nitrogen-containing mesoporous carbon
3.2 The synthesis of nitrogen-containing carbon fibers
3.3 The synthesis of nitrogen-containing auxiliary carbon
4 Conclusion and outlook

CLC Number: 

[1] David W I F, Ibberson R M, Matthewman J C, Prassides K, Dennis T J S, Hare J P, Kroto H W, Taylor R, Walton D R M. Nature, 1991, 353(6340): 147—149
[2] Pan X L, Bao X H. Acc. Chem. Res., 2011, 44(8): 553—562
[3] Geim A K, Novoselov K S. Nat. Mater., 2007, 6(3): 183—191
[4] Fu Y, Carlberg B, Lindahl N, Lindvall N, Bielecki J, Matic A, Song Y X, Hu Z L, Lai Z H, Ye L L, Sun J, Zhang Y H, Zhang Y, Liu J. Adv. Mater., 2012, 24(12): 1576—1581
[5] Fujisawa K, Tojo T, Muramatsu H, Elias A, Vega-Diaz S M, Trista-Lopez F, Kim J H, Hayashi T, Kim Y A, Endo M, Terrones M. Nanoscale, 2011, 3(10): 4359—4364
[6] Czerw R, Terrones M, Charlier J C, Blase X, Foley B, Kamalakaran R, Grobert N, Terrones H, Tekleab D, Ajayan P M, Blau W, Rühle M, Carroll D L. Nano Lett., 2001, 1(9): 457—460
[7] Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat. Mater., 2009, 8(1): 76—80
[8] Wang Y, Shao Y Y, Matson D W, Li J H, Lin Y H. ACS Nano, 2010, 4(4): 1790—1798
[9] Yang W, Fellinger T P, Antonietti M. J. Am. Chem. Soc., 2010, 133(2): 206—209
[10] Yu D S, Nagelli E, Du F, Dai L M. J. Phys. Chem. Lett., 2010, 1(14): 2165—2173
[11] Jeong H M, Lee J W, Shin W H, Choi Y J, Shin H J, Kang J K, Choi J W. Nano Lett., 2011, 11(6): 2472—2477
[12] Hulicova D, Yamashita J, Soneda Y, Hatori H, Kodama M. Chem. Mater., 2005, 17(5): 1241—1247
[13] 李莉香(Li L X), 刘永长(Liu Y C), 耿新(Geng X), 安百刚(An B G). 物理化学学报(Acta Phys. Chim. Sin. ), 2011, 27(2): 443—448
[14] Xiao K, Liu Y Q, Hu P A, Yu G, Sun Y M, Zhu D B. J. Am. Chem. Soc., 2005, 127(24): 8614—8617
[15] Artyukhin A B, Stadermann M, Friddle R W, Stroeve P, Bakajin O, Noy A. Nano Lett., 2006, 6(9): 2080—2085
[16] Misewich J A, Martel R, Avouris P, Tsang J C, Heinze S, Tersoff J. Science, 2003, 300(5620): 783—796
[17] 周晓龙(Zhou X L), 柴扬(Chai Y), 李萍剑(Li P J), 潘光虎(Pan G H), 孙晖(Sun H), 申自勇(Shen Z Y), 张琦锋(Zhang Q F), 吴锦雷(Wu J L). 物理化学学报(Acta Phys. Chim. Sin. ), 2005, 21(10): 1127—1131
[18] Guldi D M, Rahman G M A, Prato M, Jux N, Qin S H, Ford W. Angew. Chem., 2005, 117(13): 2051—2054
[19] Lee J M, Park J, Lee S H, Kim H, Yoo S, Kim S O. Adv. Mater., 2011, 23(5): 629—633
[20] Paek S M, Yoo E, Honma I. Nano Lett., 2008, 9(1): 72—75
[21] Reddy A L M., Srivastava A, Gowda S R, Gullapalli H, Dubey M, Ajayan P M. ACS Nano, 2010, 4(11): 6337—6342
[22] 智林杰(Zhi L J), 方岩(Fang Y), 康飞宇(Kang F Y). 新型炭材料(New Carbon Materials), 2011, 26(1): 5—8
[23] Yuan J, Marquez A G, Reinacher J, Giordano C, Janek J, Antonietti M. Polym. Chem., 2011, 2(8): 1654—1657
[24] Fechler N, Fellinger T P, Antonietti M. Chem. Mater., 2012, 24(4), 713—719
[25] Shin W H, Jeong H M, Kim B G, Kang J K, Choi J W. Nano Lett., 2012, 12(5): 2283—2288
[26] Sun Z Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour J M. Nature, 2010, 468(7323): 549—552
[27] Fellinger T P, Su D S, Engenhorst M, Gautam D, Schlogl R, Antonietti M. J. Mater. Chem., 2012, 22(45): 23996—24005
[28] Zhong M J, Natesakhawat S, Baltrus J P, Luebke D, Nulwala H, Matyjaszewski K, Kowalewski T. Chem. Commun., 2012, 48(94): 11516—11518
[29] Chen S, Bi J, Zhao Y, Yang L J, Zhang C, Ma Y W, Wu Q, Wang X Z, Hu Z. Adv. Mater., 2012, 24(41): 5593—5597
[30] Park S, Hu Y C, Hwang J O, Lee E S, Casabianca L B, Cai W, Potts J R, Ha H W, Chen S S, Oh J, Kim S O, Kim Y H, Ishii Y, Ruoff R S. Nat. Commun., 2012, 3: art. no. 638
[31] Tang Y B, Yin L C, Yang Y, Bo X H, Cao Y L, Wang H E, Zhang W J, Bello I, Lee S T, Cheng H M, Lee C S. ACS Nano, 2012, 6(3): 1970—1978
[32] Long D H, Li W, Ling L C, Miyawaki J, Mochida I, Yoon S H. Langmuir, 2010, 26(20): 16096—16102
[33] Liang J, Jiao Y, Jaroniec M, Qiao S Z. Angew. Chem. Int. Ed., 2012, 51(46): 11496—11500
[34] Parvez K, Yang S B, Hernandez Y, Winter A, Turchanin A, Feng X L, Müllen K. ACS Nano, 2012, 6: 9541—9550
[35] Paraknowitsch J P, Thomas A, Antonietti M. J. Mater. Chem., 2010, 20(32): 6746—6758
[36] Hulicova-Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu Z H, Lu G Q. Adv. Funct. Mater., 2009, 19(11): 1800—1809
[37] Lu A H, Kiefer A, Schmidt W, Schüth F. Chem. Mater., 2003, 16(1): 100—103
[38] Saufi S M, Ismail A F. Carbon, 2004, 42(2) : 241—259
[39] Jang J, Oh J H. Chem. Commun., 2004, 7: 882—883
[40] Jang J, Li X L, Oh J H. Chem. Commun., 2004, 794—795
[41] Wu G, Mack N H, Gao W, Ma S G, Zhong R Q, Han J T, Baldwin J K, Zelenay P. ACS Nano, 2012, 6: 9764—9776
[42] Hsu C H, Wu H M, Kuo P L. Chem. Commun., 2010, 46(40): 7628—7630
[43] Li X H, Zhang J S, Chen X F, Fische A, Thomas A, Antonietti M, Wang X C. Chem. Mater., 2011, 23(19): 4344—4348
[44] Goettmann F, Fischer A, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2006, 45(27): 4467—4471
[45] Vinu A, Srinivasu P, Sawant D P, Mori T, Ariga K, Chang J S, Jhung S H, Balasubramanian V V, Hwang Y K. Chem. Mater., 2007, 19(17): 4367—4372
[46] Jin X, Balasubramanian V V, Selvan S T, Sawant D P, Chari M A, Lu G Q, Vinu A. Angew. Chem., 2009, 121(42): 8024—8027
[47] Rogers R D, Voth G A. Acc. Chem. Res., 2007, 40(11): 1077—1078
[48] Armand M, Endres F, MacFarlane D R, Ohno H, Scrosati B. Nat. Mater., 2009, 8(8): 621—629
[49] Wilkes J S, Zaworotko M J. Journal of the Chemical Society, Chem. Commun., 1992, (13): 965—967
[50] Forsyth S A, Pringle J M, MacFarlane D R. Aust. J. Chem., 2004, 57(2): 113—119
[51] Lu W, Fadeev A G, Qi B, Smela E, Mattes B R, Ding J, Spinks G M, Mazurkiewicz J, Zhou D Z, Wallace G G, MacFarlane D R, Forsyth S A, Forsyth M. Science, 2002, 297(5583): 983—987
[52] Lewandowski A, Šwiderska-Mocek A. J. Power Sources, 2009, 194(2): 601—609
[53] Rogers R D, Seddon K R. Science, 2003, 302(5646): 792—793
[54] Cooper E R, Andrews C D, Wheatley P S, Webb P B, Wormald P, Morris R E. Nature, 2004, 430(7003): 1012—1016
[55] Cole A C, Jensen J L, Ntai I, Tran K L T, Weaver K J, Forbes D C, Davis J H. J. Am. Chem. Soc., 2002, 124(21): 5962—5963
[56] Torimoto T, Tsuda T, Okazaki K I, Kuwabata S. Adv. Mater., 2010, 22(11): 1196—1221
[57] Antonietti M, Kuang D, Smarsly B, Zhou Y. Angew. Chem. Int. Ed., 2004, 43(38): 4988—4992
[58] Kim T, Lee H, Kim J, Suh K S. ACS Nano, 2010, 4(3): 1612—1618
[59] Nakashima T, Kimizuka N. J. Am. Chem. Soc., 2003, 125(21): 6386—6387
[60] Ma Z, Yu J H, Dai S. Adv. Mater., 2010, 22(2): 261—285
[61] Park M J, Lee J K, Lee B S, Lee Y W, Choi I S, Lee S G. Chem. Mater., 2006, 18(6): 1546—1551
[62] Wu B H, Hu D, Kuang Y J, Liu B, Zhang X H, Chen J H. Angew. Chem. Int. Ed., 2009, 48(26): 4751—4754
[63] Zhang H, Cui H. Langmuir, 2009, 25(5): 2604—2612
[64] Wang C M, Luo X Y, Luo H M, Jiang D E, Li H R, Dai S. Angew. Chem. Int. Ed., 2011, 50(21): 4918—4922
[65] Bates E D, Mayton R D, Ntai I, Davis J H. J. Am. Chem. Soc., 2002, 124(6): 926—927
[66] Cadena C, Anthony J L, Shah J K, Morrow T I, Brennecke J F, Maginn E J. J. Am. Chem. Soc., 2004, 126(16): 5300—5308
[67] Lee J S, Wang X Q, Luo H M, Baker G A, Dai S. J. Am. Chem. Soc., 2009, 131(13): 4596—4597
[68] Wang X Q, Dai S. Angew. Chem. Int. Ed., 2010, 49(37): 6664—6668
[69] Lee J S, Wang X Q, Luo H M, Dai S. Adv. Mater., 2010, 22(9): 1004—1007
[70] Yuan J Y, Giordano C, Antonietti M. Chem. Mater., 2010, 22(17): 5003—5012
[71] Lee J S, Luo H M, Baker G A, Dai S. Chem. Mater., 2009, 21(20): 4756—4758
[72] Fredlake C P, Crosthwaite J M, Hert D G, Aki S N V K, Brennecke J F. J. Chem. Eng. Data, 2004, 49(4): 954—956
[73] Ryoo R, Joo S H, Jun S. J. Phys. Chem. B, 1999, 103(37): 7743—7746
[74] Zhang F Q, Meng Y, Gu D, Yan Y, Yu C Z, Tu B. Zhao D Y. J. Am. Chem. Soc., 2005, 127(39): 13508—13509
[75] Fang Y, Gu D, Zou Y, Wu Z X, Li F Y, Che R C, Deng Y H, Tu B, Zhao D Y. Angew. Chem. Int. Ed., 2010, 49(43): 7987—7991
[76] Huang Y, Cai H Q, Yu T, Zhang F Q, Zhang F, Meng Y, Gu D, Wan Y, Sun X L, Tu B, Zhao D Y. Angew. Chem. Int. Ed., 2007, 46(7): 1089—1093
[77] Liang C D, Hong K L, Guiochon G A, Mays J W, Dai S. Angew. Chem. Int. Ed., 2004, 43(43): 5785—5789
[78] Liang C D, Dai S. J. Am. Chem. Soc., 2006, 128(16): 5316—5317
[79] Groenewolt M, Antonietti M. Adv. Mater., 2005, 17(14): 1789—1792
[80] Kuhn P, Forget A, Hartmann J, Thomas A, Antonietti M. Adv. Mater., 2009, 21(8): 897—901
[81] Bojdys M J, Jeromenok J, Thomas A, Antonietti M. Adv. Mater., 2010, 22(19): 2202—2205
[82] Thomas A, Fischer A, Goettmann F, Antonietti M, Muller J O, Schlogl R, Carlsson J M. J. Mater. Chem., 2008, 18(41): 4893—4908
[83] Fulvio P F, Lee J S, Mayes R T, Wang X Q, Mahurin S M, Dai S. Phys. Chem. Chem. Phys., 2011, 13(30): 13486—13491
[84] Maldonado S, Stevenson K J. J. Phys. Chem. B, 2004, 108(31): 11375—11383
[85] Bezemer G L, Bitter J H, Kuipers H P C E, Oosterbeek H, Holewijn J E, Xu X D, Kapteijn F, van Dillen A J, de Jong K P. J. Am. Chem. Soc., 2006, 128(12): 3956—3964
[86] Yang L, Cheng S, Ding Y, Zhu X B, Wang Z L, Liu M L. Nano Lett., 2012, 12(1): 321—325
[87] Kim C, Yang K S, Kojima M, Yoshida K, Kim Y J, Kim Y A, Endo M. Adv. Funct. Mater., 2006, 16(18): 2393—2397
[88] Li H S, Shen L F, Zhang X G, Nie P, Chen L, Xu K. J. Electrochem. Soc., 2012, 159(4): A426—A430
[89] Vamvakaki V, Tsagaraki K, Chaniotakis N. Anal. Chem., 2006, 78(15): 5538—5542
[90] Yang X J, Guillorn M A, Austin D, Melechko A V, Cui H T, Meyer H M, Merkulov V I, Caughman J B O, Lowndes D H, Simpson M L. Nano Lett., 2003, 3(12): 1751—1755
[91] Che G, Lakshmi B B, Martin C R, Fisher E R, Ruoff R S. Chem. Mater., 1998, 10(1): 260—267
[92] Lim S, Yoon S H, Mochida I, Jung D H. Langmuir, 2009, 25(14): 8268—8273
[93] Liang Y Y, Schwab M G, Zhi L J, Mugnaioli E, Kolb U, Feng X L, Müllen K. J. Am. Chem. Soc., 2010, 132(42): 15030—15037
[94] Lee J S, Kwon O S, Park S J, Park E Y, You S A, Yoon H, Jang J. ACS Nano, 2011, 5(10): 7992—8001
[95] Zhao Y, Cao X Y, Jiang L. J. Am. Chem. Soc., 2007, 129(4): 764—765
[96] Liu W Y, Thomopoulos S, Xia Y N. Adv. Healthc. Mater., 2012, 1(1): 10—25
[97] Greiner A, Wendorff J H. Angew. Chem. Int. Ed., 2007, 46(30): 5670—5703
[98] Chen H Y, Di J C, Wang N, Dong H, Wu J, Zhao Y, Yu J H, Jiang L. Small, 2011, 7(13): 1779—1783
[99] Chen H, Elabd Y A. Macromolecules, 2009, 42(9): 3368—3373
[100] Jacob D S, Genish I, Klein L, Gedanken A. J. Phys. Chem. B, 2006, 110(36): 17711—17714
[101] Zhao L, Hu Y S, Li H, Wang Z X, Chen L Q. Adv. Mater., 2011, 23(11): 1385—1388
[102] Paraknowitsch J P, Zhang Y J, Thomas A. J. Mater. Chem., 2011, 21(39): 15537—15543
[103] Wang Y, Zhang J S, Wang X C, Antonietti M, Li H R. Angew. Chem. Int. Ed., 2010, 49(19): 3356—3359
[1] Fengguo Liu, Bo Wang, Lianyu Zhang, Aimin Liu, Zhaowen Wang, Zhongning Shi. Application of Ionic Liquids in Aluminum and Alloy Electrodeposition [J]. Progress in Chemistry, 2020, 32(12): 2004-2012.
[2] Guobin Tong, Lei E, Zhou Xu, Chunhui Ma, Wei Li, Shouxin Liu. Preparation, Modification and Application of Carbon Materials Based on Ionic Liquids [J]. Progress in Chemistry, 2019, 31(8): 1136-1147.
[3] Zhiyong Li, Ying Feng, Huiyong Wang, Xiaoqing Yuan, Yuling Zhao, Jianji Wang. Structure and Performance Modulation of Photo-Responsive Ionic Liquids [J]. Progress in Chemistry, 2019, 31(11): 1550-1559.
[4] Wenqiao Liu, Zhen Li, Chungu Xia. Preparation and Application of Acidic Ionic Liquid Hybrid Solid Catalytic Materials [J]. Progress in Chemistry, 2018, 30(8): 1143-1160.
[5] Haidong Cheng, Shuangjun Chen*. Degradation and Synthesis of Poly (Ethylene Terephthalate) by Functionalized Ionic Liquids [J]. Progress in Chemistry, 2017, 29(4): 443-449.
[6] Song Heyuan, Kang Meirong, Jin Ronghua, Jin Fuxiang, Chen Jing. Application of Ionic Liquids to the Carbonylation Reactions [J]. Progress in Chemistry, 2016, 28(9): 1313-1327.
[7] Yang Xuzhao, Wang Jun, Fang Yun. Synthesis, Properties and Applications of Dicationic Ionic Liquids [J]. Progress in Chemistry, 2016, 28(2/3): 269-283.
[8] Wang Xue, Tan Chen, Li Yongqi, Zhang Heng, Liu Ye. Synthesis of Ionic Phosphines and Corresponding Ionic Transition Metal Complexes and Their Applications in Homogeneous Catalysis [J]. Progress in Chemistry, 2015, 27(1): 27-37.
[9] Li Qingchuan, Cao Lixin, Hu Haifeng, Wang Kai, Yan Peisheng. Electrochemical Biosensors for Aflatoxin Analysis [J]. Progress in Chemistry, 2014, 26(04): 657-664.
[10] You Hongxing, Wang Yongyong, Wang Xuezhu, Liu Ye. Syntheses and Catalytic Applications of the Transition Metal Complex-Functionalized Ionic Liquids [J]. Progress in Chemistry, 2013, 25(10): 1656-1666.
[11] Liu Shuo, Ying Anguo, Ni Yuxiang, Yang Jianguo, Xu Songlin. Application of Task-Specific Ionic Liquids to Michael Additions [J]. Progress in Chemistry, 2013, 25(08): 1313-1324.
[12] Zhang Yingying, Lu Xiaohua*, Feng Xin, Shi Yijun, Ji Xiaoyan. Properties and Applications of Choline-Based Deep Eutectic Solvents [J]. Progress in Chemistry, 2013, 25(06): 881-892.
[13] Li Man, Yang Lei, Han Feng, Chen Jing*, Xia Chungu. Task-Specific Ionic Liquids Catalyzed Carbon-Heteroatom Bond Formation Reactions [J]. Progress in Chemistry, 2013, 25(06): 940-960.
[14] Chen Xuwei, Mao Quanxing, Wang Jianhua*. Ionic Liquids in Extraction/Separation of Proteins [J]. Progress in Chemistry, 2013, 25(05): 661-668.
[15] Zhang Heng, Zhou Zhibin, Nie jin*. Recent Advances of Polymeric Ionic Liquids [J]. Progress in Chemistry, 2013, 25(05): 761-774.