中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (06): 869-880 DOI: 10.7536/PC121264 Previous Articles   Next Articles

Self-Assemblies Based on Perylene Bisimides and Macrocyclic Hosts

Jiang Bangping, Guo Dongsheng, Liu Yu*   

  1. Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
  • Received: Online: Published:
PDF ( 1097 ) Cited
Export

EndNote

Ris

BibTeX

Perplene bisimides (PBIs) and its derivatives, a rohust class of n-type organic materials, have attracted intense interest because of their intriguing π…π stacking and outstanding optoelectronic properties. The construction of well-defined nanoscopic supramolecular architectures through combining macrocyclic hosts and PBIs is a fascinating topic of interdisciplinary researches on chemistry, materials science, and nanotechnology, which is expected to gain new nano-materials with unique electronic and photonic properties in this mini review, we mainly summarize our recent progresses in directing the formation of the desirable PBI superstructures through introducing macrocyclic hosts into PBI systems by covalent or non-covalent methods. The combination of macrocyclic hosts and PBIs may not only modulate photophysical behaviors of PBIs but also endow corresponding assemblies with novel physicochemical properties, which show a wide range of intriguing applications in sensory materials and optoelectronic devices. Thus, these researches extend the construction of desired functional supramolecular architectures from PBI building blocks, it is hopeful that this review can provide a sophisticated pathway for further designing fascinating PBI-macrocyclic systems.

CLC Number: 

[1] Ajayaghosh A, Praveen V K. Acc. Chem. Res., 2007, 40: 644-656

[2] Grimsdale A C, Müllen K. Angew. Chem. Int. Ed., 2005, 44: 5592-5629

[3] Lee C C, Grenier C, Meijer E W, Schenning A P H. J. Chem. Soc. Rev., 2009, 38: 671-683

[4] Ryu J H, Hong D J, Lee M. Chem. Commun., 2008, 1043-1054

[5] Würthner F. Chem. Commun., 2004, 1564-1579

[6] Elemans J A A W, van Hameren R, Nolte R J M, Rowan A E. Adv. Mater., 2006, 18: 1251-1266

[7] Wasielewski M R. J. Org. Chem., 2006, 71: 5051-5066

[8] Zang L, Che Y, Moore J S. Acc. Chem. Res., 2008, 41: 1596-1608

[9] Görl D, Zhang X, Würthner F. Angew. Chem. Int. Ed., 2012, 51: 6328-6348

[10] Ehli C, Oelsner C, MateoAlonso A, Prato M, Schmidt C, Backes C, Hauke F, Hirsch A, Guldi D M. Nat. Chem., 2009, 1: 243-249

[11] Hahn U, Engmann S, Oelsner C, Ehli C, Guldi D M, Torres T. J. Am. Chem. Soc., 2010, 132: 6392-6401

[12] Krieg E, Shirman E, Weissman H, Shimoni E, Wolf S G, Pinkas I, Rybtchinski B. J. Am. Chem. Soc., 2009, 131: 14365-14373

[13] Ryu J H, Jang C J, Yoo Y S, Lim S G, Lee M. J. Org. Chem., 2005, 70: 8956-8962

[14] Osswald P, Leusser D, Stalke D, Würthner F. Angew. Chem. Int. Ed., 2005, 44: 250-253

[15] Langhals H, Jona W, Einsiedl F, Wohnlich S. Adv. Mater., 1998, 10: 1022-1024

[16] Jeon Y M, Lim T H, Kim J G, Kim J S, Gong M S. Bull. Korean Chem. Soc., 2007, 28: 816-820

[17] Slater B J, Davies E S, Argent S P, Nowell H, Lewis W, Blake A J, Champness N R. Chem. Eur. J., 2011, 17: 14746-14751

[18] Jeon Y M, Lim T H, Kim J G, Gong M S. Macromol. Res., 2007, 15: 473-477

[19] Yao H Q, Zhang H Y, Han M, Ding Z J, Zhang Z J, Liu Y. Sci. China, Chem., 2010, 53: 1982-1986

[20] Liu Y, Wang K R, Guo D S, Jiang B P. Adv. Funct. Mater., 2009, 19: 2230-2235

[21] Jiang B P, Guo D S, Liu Y. J. Org. Chem., 2010, 75: 7258-7264

[22] Wang K R, Guo D S, Jiang B P, Sun Z H, Liu Y. J. Phys. Chem. B, 2010, 114: 101-106

[23] Jiang B P, Guo D S, Liu Y. J. Org. Chem., 2011, 76: 6101-6107

[24] Wang K R, Guo D S, Jiang B P, Liu Y. Chem. Commun., 2012, 48: 3644-3646

[25] Takashima Y, Fukui Y, Otsubo M, Hamada N, Yamaguchi H, Yamamoto H, Harada A. Polym J., 2012, 44: 278-285

[26] Zhu G, Zhang X, Gai P, Zhang X, Chen J. Nanoscale, 2012, 4: 5703-5709

[27] Vysotsky M O, Bohmer V, Würthner F, You C C, Rissanen K. Org. Lett., 2002, 4: 2901-2904

[28] Hippius C, Schlosser F, Vysotsky M O, Böhmer V, Würthner F. J. Am. Chem. Soc., 2006, 128: 3870-3871

[29] Hippius C, van Stokkum I H M, Zangrando E, Williams R M, Würthner F. J. Phys. Chem. C, 2007, 111: 13988-13996

[30] Hippius C, van Stokkum I H M, Gsänger M, Groeneveld M M, Williams R M, Würthner F. J. Phys. Chem. C, 2008, 112: 2476-2486

[31] Hippius C, van Stokkum I H M, Zangrando E, Williams R M, Wykes M, Beljonne D, Würthner F. J. Phys. Chem. C, 2008, 112: 14626-14638

[32] Anh N V, Schlosser F, Groeneveld M M, van Stokkum I H M, Würthner F, Williams R M. J. Phys. Chem. C, 2009, 113: 18358-18368

[33] Ernst D, Hildner R, Hippius C, Würthner F, Köhler J. Chem. Phys. Lett., 2009, 482: 93-98

[34] Siekierzycka J R, Hippius C, Würthner F, Williams R M, Brouwer A M. J. Am. Chem. Soc., 2010, 132: 1240-1242

[35] Guo D S, Jiang B P, Wang X, Liu Y. Org. Biomol. Chem., 2012, 10: 720-723

[36] Biedermann F, Elmalem E, Ghosh I, Nau W M, Scherman O A. Angew. Chem. Int. Ed., 2012, 51: 7739-7743

[37] Pedersen C J. J. Am. Chem. Soc., 1967, 89: 7017-7036

[38] Christensen J J, Eatough D J, Izatt R M. Chem. Rev., 1974, 74: 351-384

[39] Bradshaw J S, Izatt R M. Acc. Chem. Res., 1997, 30: 338-345

[40] Gokel G W, Leevy W M, Weber M E. Chem. Rev., 2004, 104: 2723-2750

[41] Krakowiak K E, Bradshaw J S, ZameckaKrakowiak D J. Chem. Rev., 1989, 89: 929-972

[42] An H, Bradshaw J S, Izatt R M, Yan Z. Chem. Rev., 1994, 94: 939-991

[43] Zhang Z J, Zhang H Y, Wang H, Liu Y. Angew. Chem. Int. Ed., 2011, 50: 10834-10838

[44] Liu Y, Chen Y. Acc. Chem. Res., 2006, 39: 681-691

[45] Chen Y, Zhang Y M, Liu Y. Chem. Commun., 2010, 46: 5622-5633

[46] Chen Y, Liu Y. Chem. Soc. Rev., 2010, 39: 495-505

[47] Harada A, Hashidzume A, Yamaguchi H, Takashima Y. Chem. Rev., 2009, 109: 5974-6023

[48] Guo D S, Liu Y. Chem. Soc. Rev., 2012, 41: 5907-5921

[49] Guo D S, Wang K, Liu Y. J. Incl. Phenom. Macrocycl. Chem., 2008, 62: 1-21

[50] Wei A. Chem. Commun., 2006, 1581-1591

[51] Homden D M, Redshaw C. Chem. Rev., 2008, 108: 5086-5130

[52] Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. Angew. Chem. Int. Ed., 2005, 44: 4844-4870

[53] Ko Y H, Kim E, Hwang I, Kim K. Chem. Commun., 2007, 1305-1315

[54] Zheng B, Wang F, Dong S, Huang F. Chem. Soc. Rev., 2012, 41: 1621-1636

[55] Yan X, Wang F, Zheng B, Huang F. Chem. Soc. Rev., 2012, 41: 6042-6065

[56] Huang F, Gibson H W. Progress in Polymer Science, 2005, 30: 982-1018

[57] Che Y, Yang X, Loser S, Zang L. Nano Lett., 2008, 8: 2219-2223

[58] Guo X, Szoka F C. Acc. Chem. Res., 2003, 36: 335-341

[59] Park C, Lee I H, Lee S, Song Y, Rhue M, Kim C. Proc. Natl. Acad. Sci. U.S.A, 2006, 103: 1199-1203

[60] Wang C, Chen Q, Xu H, Wang Z, Zhang X. Adv. Mater., 2010, 22: 2553-2555

[61] Baram J, Shirman E, BenShitrit N, Ustinov A, Weissman H, Pinkas I, Wolf S G, Rybtchinski B. J. Am. Chem. Soc., 2008, 130: 14966-14967

[62] Kelley R F, Shin W S, Rybtchinski B, Sinks L E, Wasielewski M R. J. Am. Chem. Soc., 2007, 129: 3173-3181

[63] Kenis P J A, Noordman O F J, Houbrechts S, van Hummel G J, Harkema S, van Veggel F C J M, Clays K, Engbersen J F J, Persoons A, van Hulst N F, Reinhoudt D N. J. Am. Chem. Soc., 1998, 120: 7875-7883

[64] Schazmann B, Alhashimy N, Diamond D. J. Am. Chem. Soc., 2006, 128: 8607-8614

[65] Gadde S, Batchelor E K, Weiss J P, Ling Y, Kaifer A E. J. Am. Chem. Soc., 2008, 130: 17114-17119

[66] Jiao D, Biedermann F, Tian F, Scherman O A. J. Am. Chem. Soc., 2010, 132: 15734-15743

[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[4] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[5] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[6] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[7] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[8] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[9] Hui-Juan Wang, Yu Liu. Molecular Binding and Assembly of Sulfonated Crown Ethers [J]. Progress in Chemistry, 2020, 32(11): 1651-1664.
[10] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[11] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[12] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[13] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[14] Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu, Jingjun Ma. Stimuli-Responsive Peptides Self-Assembly and Its Application [J]. Progress in Chemistry, 2019, 31(1): 83-93.
[15] Liu Xu, Chen Qian, Chenqi Zhu, Zhipeng Chen, Rui Chen*. The Study of Peptides Nanomedicine for Drug Delivery Systems [J]. Progress in Chemistry, 2018, 30(9): 1341-1348.