中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC121261 Previous Articles   Next Articles

• Review •

Transfection of Nucleic Acids Mediated by Macrocyclic Polyamine-Based Liposomes

Liu Baoquan1,2, Liu Qiang1, Zhang Ji1, Fan Shengdi2, Yu Xiaoqi*1   

  1. 1. Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China;
    2. Key Laboratory of Biochemical Engineering, Ministry of Education, Dalian Nationalities University, Dalian 116600, China
  • Received: Revised: Online: Published:
PDF ( 867 ) Cited
Export

EndNote

Ris

BibTeX

Cationic lipid-based nanodevices were considered to be appropriate alternatives for virus-based particles in the delivery of nucleic acids, such as DNA and siRNA. Macrocyclic polyamine-based cationic lipids have great potential as gene delivery vectors. The cationic amino groups on the macrocyclic backbone can interact with nucleic acid (DNA/RNA) via electrostatic interaction and hydrogen bonds. Three types of macrocyclic polyamines including 1, 4, 7-triazacyclononane (tacn), 1, 4, 7, 10-tetraazacyclododecane (cyclen) and 1, 4, 8, 11-tetraazacyclotetradecane (cyclam) were mainly used to construct these lipidic vectors. It was found that the transfection efficiency might be largely influenced by the structures of both the hydrophobic moiety and linking group, which bridge the hydrophilic polyamine and hydrophobic tails. Some metal complexes of macrocyclic polyamines could not only achieve efficient gene delivery, but also have the potential as visibility and radiation therapy reagents. This paper reviews the application of macrocyclic polyamine-based liposomes on nucleic acids delivery. Their structure-activity relationships were discussed, and the progress in relative field was expected. Contents
1 Introduction
2 Characteristics of macrocyclic polyamines and their interaction with nucleic acids
2.1 Characteristics of macrocyclic polyamines
2.2 The interaction of macrocyclic polyamines and nucleic acids
3 Tacn-based cationic lipids for DNA delivery
3.1 Long chain modified tacn lipids
3.2 Tacn lipid containing copper(Ⅱ) ion
4 Cyclen-based cationic lipids for DNA delivery
4.1 Long chain modified cyclen lipids
4.2 Sterides modified cyclen lipids
5 Cyclen-based lipids for RNA delivery
6 Cyclen-based lipids for labelling and tracing application
7 Other lipidic macrocyclic polyamines as potential gene vectors
8 Possible mechanism of macrocyclic polyamines for protection of nucleic acids
9 Conclusions and outlook

CLC Number: 

[1] Chang H I, Yeh M K. Int. J. Nanomed., 2012, 7: 49-60
[2] Chandrawati R, Caruso F. Langmuir, 2012, 28(39): 13798-13807
[3] Bernitzki K, Maue M, Schrader T. Chemistry, 2012, 18(42): 13412-13417
[4] Mukai M, Maruo K, Sasaki Y, Kikuchi J. Chemistry, 2012, 18(11): 3258-3263
[5] Srinivas R, Samanta S, Chaudhuri A. Chem. Soc. Rev., 2009, 38(12): 3326-3338
[6] Li S, Goins B, Zhang L, Bao A. Bioconjugate Chem., 2012, 23: 1322-1332
[7] Miller A D. Nature, 1992, 357(6378): 455-460
[8] Bhattacharya S, Bajaj A. Chem. Commun., 2009, (31): 4632-4656
[9] 黄清东(Huang Q D). 四川大学博士学位论文(Doctoral Dissertation of Sichuan University), 2011
[10] 李硕(Li S). 四川大学博士学位论文(Doctoral Dissertation of Sichuan University), 2012
[11] Chen C H, Lin Y L, Liu Y K, He P J, Lin C M, Chiu Y H, Wu C J, Cheng T L, Liu S J, Liao K W. Int. J. Nanomed., 2012, 7: 607-621
[12] Watanabe K, Kaneko M, Maitani Y. Int. J. Nanomed., 2012, 7: 3679-3688
[13] 周立宏(Zhou L H), 王娜(Wang N), 余孝其(Yu X Q). 化学进展(Progress in Chemistry), 2007, 19(12): 1909-1918
[14] Archibald S. Annu. Rep. Prog. Chem. Sect. A, 2008, 104: 272-296
[15] 向清祥(Xiang Q X), 夏传琴(Xia C Q), 余孝其(Yu X Q), 张丽群(Zhang L Q), 谢如刚(Xie R G). 有机化学(Chinese J. Org. Chem.), 2004, 24(9): 981-986
[16] Lima L M, Esteban-Gomez D, Delgado R, Platas-Iglesias C, Tripier R. Inorg. Chem., 2012, 51(12): 6916-6927
[17] Mewis R, Archibald S. Coord. Chem Rev., 2010, 254: 1686-1712
[18] Yan H, Li Z F, Guo Z F, Lu Z L, Wang F, Wu L Z. Bioorg. Med. Chem., 2012, 20(2): 801-808
[19] Wang M Q, Zhang J, Zhang Y, Zhang D W, Liu Q, Liu J L, Lin H H, Yu X Q. Bioorg. Med. Chem. Lett., 2011, 21(19): 5866-5869
[20] Zhang Q F, Yang W H, Yi W J, Zhang J, Ren J, Luo T Y, Zhu W, Yu X Q. Bioorg. Med. Chem. Lett., 2011, 21(23): 7045-7049
[21] Cruz-Campa I, Arzola A, Santiago L, Parsons J G, Varela-Ramirez A, Aguilera R J, Noveron J C. Chem. Commun., 2007, (28): 2944-2946
[22] Huang Q D, Chen H, Zhou L H, Huang J, Wu J, Yu X Q. Chem. Biol. Drug Des., 2008, 71(3): 224-229
[23] Huang Q D, Zhong G X, Zhang Y, Ren J, Fu Y, Zhang J, Zhu W, Yu X Q. PloS One, 2011, 6(8): art. no. e23134
[24] Rajesh M, Sen J, Srujan M, Mukherjee K, Sreedhar B, Chaudhuri A. J. Am. Chem. Soc., 2007, 129(37): 11408-11420
[25] Huang Q D, Ou W J, Chen H, Feng Z H, Wang J Y, Zhang J, Zhu W, Yu X Q. Eur. J. Pharm. Biopharm., 2011, 78(3): 326-335
[26] Huang Q D, Ren J, Ou W J, Fu Y, Cai M Q, Zhang J, Zhu W, Yu X Q. Chem. Biol. Drug Des., 2012, 79(6): 879-887
[27] Huang Q D, Ren J, Chen H, Ou W J, Zhang J, Fu Y, Zhu W, Yu X Q. ChemPlusChem, 2012, 77: 584-591
[28] Liu J L, Ma Q P, Huang Q D, Yang W H, Zhang J, Wang J Y, Zhu W, Yu X Q. Eur. J. Med. Chem., 2011, 46(9): 4133-4141
[29] 陈红(Chen H), 廖易乐(Liao Y L), 黄清东(Huang Q D), 吴江(Wu J), 余孝其(Yu X Q). 高等学校化学学报(Chem. J. Chinese Universities), 2011, 32(9): 2157-2161
[30] 马丽芳(Ma L F), 黄清东(Huang Q D), 张骥(Zhang J), 吴江(Wu J), 余孝其(Yu X Q). 高等学校化学学报(Chem. J. Chinese Universities), 2011, 32(4): 874-878
[31] Islam R U, Hean J, van Otterlo W A, de Koning C B, Arbuthnot P. Bioorg. Med. Chem. Lett., 2009, 19(1): 100-103
[32] Rossiter C S, Mathews R A, Morrow J R. J. Inorg. Biochem., 2007, 101(6): 925-934
[33] Guo Z F, Yan H, Li Z F, Lu Z L. Org. Biomol. Chem., 2011, 9(19): 6788-6796
[34] Mudd S R, Trubetskoy V S, Blokhin A V, Weichert J P, Wolff J A. Bioconjugate Chem., 2010, 21(7): 1183-1189
[35] Lewis M R, Kao J Y, Anderson A L, Shively J E, Raubitschek A. Bioconjugate Chem., 2001, 12(2): 320-324
[36] Oliver M, Ahmad A, Kamaly N, Perouzel E, Caussin A, Keller M, Herlihy A, Bell J, Miller A D, Jorgensen M R. Org. Biomol. Chem., 2006, 4(18): 3489-3497
[37] Kamaly N, Kalber T, Ahmad A, Oliver M H, So P W, Herlihy A H, Bell J D, Jorgensen M R, Miller A D. Bioconjugate Chem., 2008, 19(1): 118-129
[38] Petersen A L, Binderup T, Rasmussen P, Henriksen J R, Elema D R, Kjaer A, Andresen T L. Biomaterials, 2011, 32(9): 2334-2341
[39] Galibert M, Jin Z H, Furukawa T, Fukumura T, Saga T, Fujibayashi Y, Dumy P, Boturyn D. Bioorg. Med. Chem. Lett., 2010, 20(18): 5422-5425
[40] Ostrowski A D, Lin B F, Tirrell M V, Ford P C. Mol. Pharm., 2012, 9(10): 2950-2955
[41] Rossin R, Pan D, Qi K, Turner J L, Sun X, Wooley K L, Welch M J. J. Nucl. Med., 2005, 46(7): 1210-1218
[42] Seo J W, Mahakian L M, Kheirolomoom A, Zhang H, Meares C F, Ferdani R, Anderson C J, Ferrara K W. Bioconjugate Chem., 2010, 21(7): 1206-1215
[43] Seo J W, Qin S, Mahakian L M, Watson K D, Kheirolomoom A, Ferrara K W. J. Control. Release, 2011, 151(1): 28-34
[44] Liang X, Sadler P J. Chem. Soc. Rev., 2004, 33(4): 246-266
[45] Le Bon B, Van Craynest N, Daoudi J M, Di Giorgio C, Domb A J, Vierling P. Bioconjugate Chem., 2004, 15(2): 413-423
[46] Ramana A V, Watkinson M, Todd M H. Bioorg. Med. Chem. Lett., 2008, 18(9): 3007-3010
[47] Li Z F, Chen H L, Zhang L J, Lu Z L. Bioorg. Med. Chem. Lett., 2012, 22(6): 2303-2307
[48] Labas R, Beilvert F, Barteau B, David S, Chevre R, Pitard B. Genetica, 2010, 138(2): 153-168
[49] Kimura E, Kikuta E. J. Biol. Inorg. Chem., 2000, 5(2): 139-155
[50] Lo A T, Salam N K, Hibbs D E, Rutledge P J, Todd M H. PloS One, 2011, 6(5): art. no. e17446
[1] Jing Jing, Li Yi, Liu Jian, Zhan Sihui. Liposome Formation with Electroformation Method [J]. Progress in Chemistry, 2011, 23(12): 2598-2606.