中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC121246 Previous Articles   Next Articles

Progress in Studies of Glycosylgunidines

Cao Linghua*1,2, He Yaowu1,3, Li Gen1, Haji Akber Aisa*1   

  1. 1. Key Laboratory of Chemistry of Plant Resources in Arid Regions, Chinese Academy of Sciences, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Urumqi 830011, China;
    2. College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
PDF ( 964 ) Cited
Export

EndNote

Ris

BibTeX

A lot of natural guanidine products and synthetic guanidyl compounds were presented potent biological activities. The synthesis of glycosyl guanidines has been attracted continued interests in recent years. With the discovery of natural products containing glycosyl and guandine, synthetic method of glycosyl guanidines has been improved. Thiophilic reagents and guanidinylation reagents have been used to synthesize glycosyl guanidines. In this paper, the structures, the synthetic methods and applications of glycosyl guanidine derivatives are reviewed. The prospects and research direction based on the analysis of this field are given. Contents
1 Introduction
2 Natural products of guanidinoglycoside
3 Synthetic guanidinoglycosides
3.1 Guanidinoglycosides
3.2 Non-anomeric glycosyl guanidines
3.3 Bisglycosyl guanidines
3.4 Guanylation biotinylated aminoglycosides
4 Conclusion and outlook

CLC Number: 

[1] Ferrier R J, Furneaux R H. Carbohydr. Res., 1977, 57: 73-83
[2] Berlinck R G S. Nat. Prod. Rep., 1999, 16: 339-365
[3] Ishikawa T. Chem. Pharm. Bull., 2010, 58: 1555-1564
[4] Berlinck R G S, Trindade-Silva A E, Santos M F C. Nat. Prod. Rep., 2012, 29: 1382-1406
[5] 高海翔 (Gao H X), 鲁润华 (Lu R H), 汪汉卿 (Wang H Q). 有机化学 (Chin. J. Org. Chem.), 2001, 21: 485-492
[6] 沈宗旋 (Shen Z X), 王亚玲 (Wang Y L), 张雅文 (Zhang Y W). 有机化学(Chin. J. Org. Chem.), 2002, 22: 388-396
[7] 曹玉娟 (Cao Y J), 高海翔 (Gao H X), 鲁润华 (Lu R H). 合成化学 (Chin. J. Synth. Chem.), 2003, 11: 193-202
[8] 白峰 (Bai F), 李弘 (Li H). 有机化学 (Chin. J. Org. Chem.), 2004, 24: 1532-1541
[9] 巫文静 (Wu W J), 鲁润华 (Lu R H), 高海翔 (Gao H X), 曹玉娟 (Cao Y J), 师彦平 (Shi Y P). 合成化学(Chin. J. Synth. Chem.), 2005, 13: 529-535
[10] Albein A D. Annu. Rev. Biochem., 1987, 56: 497-534
[11] Dwek R A. Chem. Rev., 1996, 96: 683-720
[12] Hughs A B, Rudge A J. Nat. Prod. Rep., 1994, 135-162
[13] Karpas A, Fleet G W J, Dwek R A, Petursson S, Namgoong S K, Ramsden N G, Jacob G S, Rademacher T W. Proc. Natl. Acad. Sci. U. S. A., 1988, 85: 9229-9233
[14] Fleet G W J, Karpas A, Dwek R A, Fellows L E, Tyms A S, Petursson S, Namgoong S K, Ramsden N G, Smith P W, Son J C, Wilson F, Witty D R, Jacob G S, Rademacher T W. FEBS Lett., 1988, 237: 128-132
[15] Wikler D A, Holan G. J. Med. Chem., 1989, 32: 2084-2089
[16] Ratner L, Heyden N V, Dedera D. Virology, 1991, 181: 180-192
[17] Gross P E, Baker M A, Carver J P, Dennis J W. Clin. Cancer Res., 1995, 1: 935-944
[18] Joubert P H, Venter C P, Joubert H F, Hillebran I. Eur. J. Pharmacol., 1985, 28: 705-708
[19] Anzeveno P B, Creemer L J, Daniel J K, King C H, Liu P S. J. Org. Chem., 1989, 54: 2539-2542
[20] Balfour J A, McTavish D. Drugs, 1993, 46: 1025-1054
[21] Truscheit E, Frommer W, Junge B, Müller L, Schmidt D D, Wingender W. Angew. Chem. Int. Ed. Engl., 1981, 20: 744-761
[22] Look G C, Fotsch C H, Wong C H. Acc. Chem. Res., 1993, 26: 182-190
[23] Ganem B. Acc. Chem. Res., 1996, 29: 340-347
[24] Gijsen H J M, Qiao L, Fitz W, Wong C H. Chem. Rev., 1996, 96: 443-474
[25] Wong C H, Halcomb R L, Ichikawa Y, Kajimoto Y. Angew. Chem. Int. Ed. Engl., 1995, 34: 412-432
[26] Kim C U, Lew W, Williams M A, Liu H, Zhang L, Swaminathan S, Bischofberger N, Chen M S, Mendel D B, Tai C Y, Laver W G, Stevens R C. J. Am. Chem. Soc., 1997, 119: 681-690
[27] von Itzstein M, Wu W Y, Kok G B, Pegg M S, Dyason J C, Jin B, Phan T V, Smythe M L, White H F, Oliver S W, Colman P M, Varghese J N, Ryan D M, Woods J M, Bethell R C, Hotham V J, Cameron J M, Penn C R. Nature, 1993, 363: 418-423
[28] Lin P S, Lee C L, Sim M M. J. Org. Chem., 2001, 66: 8243-8247
[29] Heightman T D, Vasella A T. Angew. Chem. Int. Ed. Engl., 1999, 38: 750-770
[30] Heightman T D, Ermert P, Klein D, Vasella A. Helv. Chim. Acta, 1995, 78: 514-532
[31] Pan Y T, Kanshal G P, Papandreou G, Ganem B, Elbein A D. J. Biol. Chem., 1992, 267: 8313-8318
[32] Hoos R, Vasella A, Rupitz K, Withers S G. Carbohydr. Res., 1997, 298: 291-298
[33] Blériot Y, Dintinger T, Guillo N, Tellier C. Tetrahedron Lett., 1995, 36: 5175-5178
[34] Baker T J, Luedtke N W, Tor Y, Goodman M. J. Org. Chem., 2000, 65: 9054-9058
[35] Sorek H, Rudi A, Gueta S, Reyes F, Martin M J, Aknin M, Gaydou E, Vacelet J, Kashman Y. Tetrahedron, 2006, 62: 8838-8843
[36] El-Hamamsy M H R I, Smith A W, Thompson A S, Threadgill M D. Bioorg. Med. Chem., 2007, 15: 4552-4576
[37] Gubareva L V, Kaiser L, Hayden F G. The Lancet, 2000, 355: 827-835
[38] Wong C H, Le V D. J. Org. Chem., 2000, 65: 2399-2409
[39] Merrer Y L, Gauzy L, Pelletier C G, Depezay J C. Bioorg. Med. Chem., 2000, 8: 307-320
[40] Blanco J L J, Bootello P, Benito J M, Mellet C O, Fernández J M G. J. Org. Chem., 2006, 71: 5136-5143
[41] Berlinck R G S, Kossuga M H. Nat. Prod. Rep., 2002, 16: 339-365
[42] Berlinck R G S, Kossuga M H. Nat. Prod. Rep., 2005, 22: 516-550
[43] Waksman S A, Woodruff H B J. Bacteriol., 1943, 46: 299-300
[44] Rbraham E P, Duthie E S. The Lancet, 1946, 247: 455-459
[45] Hisamoto M, Inaoka Y, Sakaida Y, Kagazaki T, Enokida R, Okazaki T, Haruyama H, Kinoshita T, Matsuda K. J. Antibiot., 1998, 51: 607-617
[46] Garrett G S, McPhail S J, Tomheim K, Correa P E, Meler J M. Bioorg. Med. Chem. Lett., 1999, 9: 301-306
[47] McDonald L A, Barbieri L R, Carter G T, Lenoy E, Lotvin J, Petersen P J, Siegel M M, Singh G, Williamson R T. J. Am. Chem. Soc., 2002, 124: 10260-10261
[48] Berlinck R G S, Burtoloso A C B, Kossuga M H. Nat. Prod. Rep., 2008, 25: 919-954
[49] Berlinck R G S, Burtoloso A C B, Trindade-Silva A E, Romminger S, Morais R P, Bandeira K, Mizuno C M. Nat. Prod. Rep., 2010, 27: 1871-1907
[50] Hirsch J, Petrakova E, Feather M S, Barnes C L. Carbohydr. Res., 1995, 267: 17-25
[51] Györgydeák Z, Holzer W, Thiem J. Carbohydr. Res., 1997, 302: 229-235
[52] Lin P, Heng S C H, Sim M M. Synthesis, 2003, (2): 255-261
[53] 钱兆生(Qian Z S), 周传健(Zhou C J), 曹玲华(Cao L H). 化学进展(Prog. Chem.), 2006, 18(4): 429-439
[54] Lin P, Lee C L, Sim M M. J. Org. Chem., 2001, 66: 8243-8247
[55] 史合方(Shi H F), 曹玲华(Cao L H). 有机化学(Chin. J. Org. Chem.), 2005, 25: 1066-1070
[56] 曹玲华(Cao L H), 连召斌(Lian Z B). 化学学报(Acta Chim Sinica.), 2007, 65(4): 349-354
[57] 连召斌(Lian Z B), 田晓红(Tian X H), 曹玲华(Cao L H). 高等学校化学学报(Chem. J. Chin. Univ.), 2007, 28(7): 1297-1303
[58] Li G, Wu P, Cao L H. Heteroat. Chem., 2007, 18(6): 688-694
[59] 田晓红(Tian X H), 曹玲华(Cao L H). 有机化学(Chin. J. Org. Chem.), 2007, 27(11): 1386-1391
[60] Yang J F, Cao L H. J. Chin. Chem. Soc., 2009, 56(2): 392-397
[61] Chen H M, Cao L H. J. Chin. Chem. Soc., 2009, 56: 1028-1034
[62] Chen H M, Zhao Y W, Cao L H. J. Chin. Chem. Soc., 2010, 57: 1085-1090
[63] Danilov S N, Lishanskii I S. Zhur. Obshch. Khim., 1955, 25: 2106-2117
[64] Wolfrom M L, Horton D, Hutson D H. J. Org. Chem., 1963, 28: 845-847
[65] Reitz A B, Tuman R W, Marchione C S, Jordan A D, Bowden C R, Maryanoff B E. J. Med. Chem., 1989, 32: 2110-2116
[66] Lehmann J, Rob B. Tetrahedron: Asymmetry, 1994, 5: 2255-2260
[67] Fernández J M G, Mellet C O, Pérez V M D, Fuentes J, Kovács J, Pintér I. Tetrahedron Lett., 1997, 38: 4161-4164
[68] Czernecki S, Franco S, Horns S, Valéry J M. Tetrahedron Lett., 1996, 37: 4003-4006
[69] 王敏(Wang M), 肖苏龙(Xiao S L), 于晓琳(Yu X L), 徐志栋(Xu Z D), 屠鹏飞(Tu P F), 杨铭(Yang M). 中国新药杂志(Chin. J. New Drugs), 2004, 13: 907-911
[70] Liu Y H, Cao L H. Carbohydr. Res., 2008, 343: 615-625
[71] Liu Y H, Cao L H. Carbohydr. Res., 2008, 343: 2376-2383
[72] Aguilar M, Pérez P D, Moreno M I G, Mellet C O, Fernández J M G. J. Org. Chem., 2008, 73: 1995-1998
[73] Fernández J M G, Mellet C O, Pérez V M D, Blanco J L J, Fuentes J. Tetrahedron, 1996, 52: 12947-12970
[74] Kovács L, Ösz E, Györgydeák Z. Carbohydr. Res., 2002, 337: 1171-1178
[75] Tian T, Cao L H. J. Chin. Chem. Soc., 2007, 54: 1369-1373
[76] Chen H M, Li G, Cao L H. J. Chin. Chem. Soc., 2008, 55: 474-478
[77] Hui Y Ptak R, Paulman R, Pallansch M, Chang C W T. Tetrahedron Lett., 2002, 43: 9255-9257
[78] Luedtke N W, Carmichael P, Tor Y. J. Am. Chem. Soc., 2003, 125: 12374-12375
[79] Dix A V, Fischer L, Sarrazin S, Redgate C P H, Esko J D, Tor Y. Chem. Bio. Chem., 2010, 11: 2302-2310
[80] Santana A G, Francisco C G, Suárez E, González C C. J. Org. Chem., 2010, 75: 5371-5374
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[6] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[7] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[8] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[9] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[10] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[11] Yang Guodong, Yuan Gaoqian, Zhang Jingzhe, Wu Jinbo, Li Faliang, Zhang Haijun. Porous Electromagnetic Wave Absorbing Materials [J]. Progress in Chemistry, 2023, 35(3): 445-457.
[12] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[13] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[14] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[15] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
Viewed
Full text


Abstract

Progress in Studies of Glycosylgunidines