中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC121242 Previous Articles   Next Articles

• Review •

Chiral Assembled Materials and Their Application in Enantiomeric Resolution

Duan Xiaoli, Fu Yan, Zhang Jinli, Li Wei*   

  1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received: Revised: Online: Published:
PDF ( 2027 ) Cited
Export

EndNote

Ris

BibTeX

Chiral assembled materials have received increasing attention in many research areas as new functional composite materials, especially focusing on their potential application in enantiomeric resolution. In this paper, the formation mechanisms of chiral assembled materials are firstly discussed from the origin of chirality, which include four main ways: chiral induction, chiral amplification, chiral transfer and chiral transcription. The formation of chiral porous metal-organic frameworks and nanocages are based on the mechanisms of chiral induction and chiral transfer, while chiral gels are formed on the basis of chiral amplification mechanism. Chiral transcription mechanism is mainly utilized to construct chiral porous inorganic materials and helical nanostructures. Secondly, stereoselective recognition of chiral assembled materials towards optical enantiomers, including metal-organic frameworks (MOFs), chiral gels, nanocages, and their applications on enantioselective separation are reviewed. Thirdly, the chiral self-assembly and stereoselective recognition of natural DNAs, as well as the applications of DNA helical structures in the fields of chiral plasmon materials and asymmetric catalysts are introduced. Finally, the unique advantages of metal-organic frameworks, chiral gels, nanocages and DNA are summerized, and the application prospects of DNAs in chiral separation are outlooked. Contents
1 Introduction
2 Formation mechanisms of chiral assembled materials
2.1 Chiral induction
2.2 Chiral amplification
2.3 Chiral transfer
2.4 Chiral transcription
3 Application of chiral assembled materials in enantioselective recognition
3.1 Metal-organic frameworks(MOFs)
3.2 Chiral gels
3.3 Nanocages
4 Application of natural DNAs in chiral separation
4.1 Chiral assembly
4.2 Enantioseparation
5 Conclusion and outlook

CLC Number: 

[1] Pieraccini S, Masiero S, Ferrarini A, Spada G P. Chem. Soc. Rev., 2011, 40(1): 258-271
[2] Strzelecka T E, Davidson M W, Rill R L. Nature, 1988, 331(6155): 457-460
[3] Ma L Q, Falkowski J M, Abney C, Lin W B. Nat. Chem., 2010, 2(10): 838-846
[4] Xu H, Zuend S J, Woll M G, Tao Y, Jacobsen E N. Science, 2010, 327(5968): 986-990
[5] Ito H. Nat. Chem., 2012, 4 (6): 438-439
[6] Phipps R J, Hamilton G L, Toste F D. Nat. Chem., 2012, 4(8): 603-614
[7] Wu X W, Starnes S D. Org. Lett., 2012, 14(14): 3652-3655
[8] Miao W G, Zhang L, Wang X F, Gao H, Jin Q X, Liu M H. Chem. Eur. J., 2013, 19(9): 3209-3036
[9] Lim I S, Mott D, Engelhard M H, Pan Y, Kamodia S, Luo J, Njoki P N, Zhou S Q, Wang L C, Zhong C J. Anal. Chem., 2009, 81(2): 689-698
[10] Xia Y S, Zhou Y L, Tang Z Y. Nanoscale, 2011, 3(4): 1374-1382
[11] Ruiz U, Pagliusi P, Provenzano C, Shibaev V P, Cipparrone G. Adv. Funct. Mater., 2012, 22(14): 2964-2970
[12] Kopp V I, Genack A Z. Nat. Photonics, 2011, 5(8): 470-472
[13] Zhou Y L, Yang M, Sun K, Tang Z Y, Kotov N A. J. Am. Chem. Soc., 2010, 132(17): 6006-6013
[14] Masini F, Kalashnyk N, Knudsen M M, Cramer J R, Lgsgaard E, Besenbacher F, Gothelf K V, Linderoth T R. J. Am. Chem. Soc., 2011, 133(35): 13910-13913
[15] Guo Z, Du Y, Chen Y T, Ng S C, Yang Y H. J. Phys. Chem. C, 2010, 114(34): 14353-14361
[16] Asefa T. Angew. Chem. Int. Ed., 2012, 51(9): 2008-2010
[17] Ishi-i T, Kuwahara R, Takata A, Jeong Y, Sakurai K, Mataka S. Chem. Eur. J., 2006, 12(3): 763-776
[18] Li C H, Chang K C, Tsou C C, Lan Y, Yang H C, Sun S S. J. Org. Chem., 2011, 76(14): 5524-5530
[19] Qiu H B, Inoue Y, Che S A. Angew. Chem. Int. Ed., 2009, 48(17): 3069-3072
[20] Pandeeswar M, Avinash M B, Govindaraju T. Chem. Eur. J., 2012, 18(16): 4818-4822
[21] Wang Y, Li Q. Adv. Mater., 2012, 24(15): 1926-1945
[22] Zhu Z N, Liu W J, Li Z T, Han B, Zhou Y L, Gao Y, Tang Z Y. ACS Nano, 2012, 6(3): 2326-2332
[23] Gibaud T, Barry E, Zakhary M J, Henglin M, Ward A, Yang Y S, Berciu C, Oldenbourg R, Hagan M F, Nicastro D, Meyer R B, Dogic Z. Nature, 2012, 481(7381): 348-353
[24] Chung W J, Oh J W, Kwak K, Lee B Y, Meyer J, Wang E, Hexemer A, Lee S W. Nature, 2011, 478(7369): 364-368
[25] Cai Y G, Bernasek S L. J. Phys. Chem. B, 2005, 109(10): 4514-4519
[26] 袁菁(Yuan J), 张莉(Zhang L), 黄昕(Huang X), 姜思光(Jiang S G), 刘鸣华(Liu M H). 化学进展(Progress in Chemistry), 2005, 17(5): 780-788
[27] Kaiser T E, Stepanenko V, Würthner F. J. Am. Chem. Soc., 2009, 131(19): 6719-6732
[28] Xu H L, Wang W Z. Angew. Chem. Int. Ed., 2007, 46(9): 1489-1492
[29] George S J, Tomovi Dc' Ž, Schenning A P H J, Meijer E W. Chem. Commun., 2011, 47: 3451-3453
[30] Wolffs M, George S J, Tomovi Dc' Ž, Meskers S C J, Schenning A P H J, Meijer E W. Angew. Chem. Int. Ed., 2007,46(43): 8203-8205
[31] Molla M R, Das A, Ghosh S. Chem. Commun., 2011, 47(31): 8934-8936
[32] Morris R E, Bu X H. Nat. Chem., 2010, 2(5): 353-361
[33] Sun C Y, Qin C, Wang C G, Su Z M, Wang S, Wang X L, Yang G S, Shao K Z, Lan Y Q, Wang E B. Adv. Mater., 2011, 23(47): 5629-5632
[34] Lan Y Q, Li S L, Wang X L, Shao K Z, Du D Y, Su Z M, Wang E B. Chem. Eur. J., 2008, 14(32): 9999-10006
[35] Palmans A R A, Meijer E W. Angew. Chem. Int. Ed., 2007, 46(47): 8948-8968
[36] Freire F, Seco J M, Quiñoá E, Riguera R. Angew. Chem. Int. Ed., 2011, 50(49): 11692-11696
[37] Danila I, Pop F, Escudero C, Feldborg L N, Luis J P, Riobe F, Avarvari N, Amabilino D B. Chem. Commun., 2012, 48(38): 4552-4554
[38] Debnath S, Bergamini J F, Artzner F, Mériadec C, Camerel F, Fourmigué M. Chem. Commun., 2012, 48(17): 2283-2285
[39] García F, Sánchez L. J. Am. Chem. Soc., 2012, 134(1): 734-742
[40] Crassous J. Chem. Soc. Rev., 2009, 38(3): 830-845
[41] Yang H, Wang F, Kang Y, Li T H, Zhang J. Chem. Commun., 2012, 48: 9424-9426
[42] Kaczorowski T, Justyniak I, Lipińska T, Lipkowski J, Lewiński J. J. Am. Chem. Soc., 2009, 131(15): 5393-5395
[43] Ho R M, Li M C, Lin S C, Wang H F, Lee Y D, Hasegawa H, Thomas E L. J. Am. Chem. Soc., 2012, 134(26): 10974-10986
[44] Revol J F, Godbout L, Gray D G. J. Pulp Pap. Sci., 1998, 24(5): 146-149
[45] Shopsowitz K E, Qi H, Hamad W Y, MacLachlan M J. Nature, 2010, 468(7322): 422-426
[46] Shopsowitz K E, Hamad W Y, MacLachlan M J. J. Am. Chem. Soc., 2012, 134(2): 867-870
[47] Herault C A, Banu A, Barboiu M, Michau M, Lee A V D. Angew. Chem. Int. Ed., 2007, 46(23): 4268-4272
[48] Li C, Deng K, Tang Z Y, Jiang L. J. Am. Chem. Soc., 2010, 132(23): 8202-8209
[49] Liu B, Han L, Che S A. Angew. Chem. Int. Ed., 2012, 51(4): 923-927
[50] Paik P, Gedanken A, Mastai Y. J. Mater. Chem., 2010, 20(20): 4085-4093
[51] Fireman-Shoresh S, Marx S, Avnir D. Adv. Mater., 2007, 19(16): 2145-2150
[52] Kim B H, Lee S U, Moon D C. Chirality, 2012, 24(12): 1037-1046
[53] Bragg W, Shamsi S A. J. Chromatogr. A, 2012, 1267: 144-155
[54] Pfaunmiller E L, Hartmann M, Dupper C M, Soman S, Hage D S. J. Chromatogr. A, 2012, 1269: 198-207
[55] Dang D B, Wu P Y, He C, Xie Z, Duan C Y. J. Am. Chem. Soc., 2010, 132(41): 14321-14323
[56] Liu Y, Xuan W M, Cui Y. Adv. Mater., 2010, 22(37): 4112-4135
[57] Liu B, Shekhah O, Arslan H K, Liu J X, Woell C, Fischer R A. Angew. Chem. Int. Ed., 2012, 51(3): 807-810
[58] Botas J A, Calleja G, Sanchez-Sanchez M, Orcajo M G. Langmuir, 2010, 26(8): 5300-5303
[59] 贾超(Jia C), 原鲜霞(Yuan X X), 马紫峰(Ma Z F). 化学进展(Progress in Chemistry), 2009, 21(9): 1954-1962
[60] Wu Y N, Li F T, Zhu W, Cui J C, Tao C A, Lin C X, Hannam P M, Li G T. Angew. Chem. Int. Ed., 2011, 50(52): 12518-12522
[61] He J, Yee K K, Xu Z T, Zeller M, Hunter A D, Chui S S Y, Che C M. Chem. Mater., 2011, 23(11): 2940-2947
[62] Ke F, Yuan Y P, Qiu L G, Shen Y H, Xie A J, Zhu J F, Tian X Y, Zhang L D. J. Mater. Chem., 2011, 21(11): 3843-3848
[63] Horcajada P, Serre C, Maurin G, Ramsahye N A, Balas F, Vallet-Regí M, Sebban M, Taulelle F, Férey G. J. Am. Chem. Soc., 2008, 130(21): 6774-6780
[64] Li J R, Tao Y, Yu Q, Bu X H, Sakamoto H, Kitagawa S. Chem. Eur. J., 2008, 14(9): 2771-2776
[65] Jiang J W, Babarao R, Hu Z Q. Chem. Soc. Rev., 2011, 40(7): 3599-3612
[66] Li G, Yu W B, Ni J, Liu T F, Liu Y, Sheng E, Cui Y. Angew. Chem., 2008, 120(7): 1265-1269
[67] Padmanaban M, Müller P, Lieder C, Gedrich K, Grünker R, Bon V, Senkovska I, Baumgärtner S, Opelt S, Paasch S, Brunner E, Glorius F, Klemm E, Kaskel S. Chem. Commun., 2011, 47(44): 12089-12091
[68] Yuan G Z, Zhu C F, Xuan W M, Cui Y. Chem. Eur. J., 2009, 15(26): 6428-6434
[69] Suh K, Yutkin M P, Dybtsev D N, Fedin V P, Kim K. Chem. Commun., 2012, 48(4): 513-515
[70] Wanderley M M, Wang C, Wu C D, Lin W B. J. Am. Chem. Soc., 2012, 134(22): 9050-9053
[71] Li G, Yu W B, Cui Y. J. Am. Chem. Soc., 2008, 130(14): 4582-4583
[72] Wang W J, Dong X L, Nan J P, Jin W Q, Hu Z Q, Chen Y F, Jiang J W. Chem. Commun., 2012, 48(56): 7022-7024
[73] Kosal M E, Chou J H, Wilson S R, Suslick K S. Nat. Mater., 2002, 1(2): 118-121
[74] Das M C, Xiang S C, Zhang Z J, Chen B L. Angew. Chem. Int. Ed., 2011, 50(45): 10510-10520
[75] Das M C, Guo Q S, He Y B, Kim J, Zhao C G, Hong K L, Xiang S C, Zhang Z J, Thomas K M, Krishna R, Chen B L. J. Am. Chem. Soc., 2012, 134(20): 8703-8710
[76] Hirst A R, Smith D K. Chem. Eur. J., 2005, 11(19): 5496-5508
[77] Yang Z M, Liang G L, Xu B. Acc. Chem. Res., 2008, 41(2): 315-326
[78] Ajayaghosh A, Praveen V K, Vijayakumar C. Chem. Soc. Rev., 2008, 37(1): 109-122
[79] George M, Weiss R G. Acc. Chem. Res., 2006, 39(8): 489-497
[80] Li Y G, Wang T Y, Liu M H. Soft Matter, 2007, 3(10): 1312-1317
[81] Sangeetha N M, Maitra U. Chem. Soc. Rev., 2005, 34(10): 821-836
[82] 孔丽(Kong L), 孙涛(Sun T), 张峰(Zhang F),辛飞飞(Xin F F),郝爱友(Hao A Y). 化学进展(Progress in Chemistry), 2012, 24(5): 790-800
[83] Fu X J, Yang Y, Wang N X, Wang H, Yang Y J. J. Mol. Recognit., 2007, 20(4): 238-244
[84] Fages F. Angew. Chem. Int. Ed., 2006, 45(11): 1680-1682
[85] Jintoku H, Takafuji M, Oda R, Ihara H. Chem. Commun., 2012, 48(40): 4881-4883
[86] Jin Q X, Zhang L, Zhu X F, Duan P F, Liu M H. Chem. Eur. J., 2012, 18(16): 4916-4922
[87] Smith D K. Chem. Soc. Rev., 2009, 38(3): 684-694
[88] Jonkheijm P, van der Schoot P, Schenning A P H J, Meijer E W. Science, 2006, 313(5783): 80-83
[89] Naota T, Koori H. J. Am. Chem. Soc., 2005, 127(26): 9324-9325
[90] Chen X, Huang Z, Chen S Y, Li K, Yu X Q, Pu L. J. Am. Chem. Soc., 2010, 132(21): 7297-7299
[91] Tu T, Fang W W, Bao X L, Li X B, Dtz K H. Angew. Chem. Int. Ed., 2011, 50(29): 6601-6605
[92] Liu T F, Liu Y, Xuan W M, Cui Y. Angew. Chem. Int. Ed., 2010, 49(24): 4121-4124
[93] Xuan W M, Zhang M N, Liu Y, Chen Z J, Cui Y. J. Am. Chem. Soc., 2012, 134(16): 6904-6907
[94] Bren U, Lah J, Bren M, Martinek V, Florian J. J. Phys. Chem. B, 2010, 114(8): 2876-2885
[95] Arcella A, Portella G, Ruiz M L, Eritja R, Vilaseca M, Gabelica V, Orozco M. J. Am. Chem. Soc., 2012, 134(15): 6596-6606
[96] Lech C J, Li Z, Heddi B, Phan A T. Chem. Commun., 2012, 48(93): 11425-11427
[97] Choi J, Kim S, Tachikawa T, Fujitsuka M, Majima T. J. Am. Chem. Soc., 2011, 133(40): 16146-16153
[98] Saha S, Chakraborty K, Krishnan Y. Chem. Commun., 2012, 48(19): 2513-2515
[99] Campolongo M J, Kahn J S, Cheng W L, Yang D Y, Campolongo T G, Luo D. J. Mater. Chem., 2011, 21(17): 6113-6121
[100] Pinheiro A V, Han D R, Shih W M, Yan H. Nat. Nanotechnol., 2011, 6(12):763-772
[101] Howson S E, Bolhuis A, Brabec V, Clarkson G J, Malina J, Rodger A, Scott P. Nat. Chem., 2012, 4(1): 31-36
[102] 陈晓东(Chen X D), 姜思光(Jiang S G), 刘鸣华(Liu M H). 化学进展(Progress in Chemistry), 2003, 15(5): 367-373
[103] Mitchell J C, Harris J R, Malo J, Bath J, Turberfield A J. J. Am. Chem. Soc., 2004, 126(50): 16342-16343
[104] Goodman R P, Schaap I A T, Tardin C F, Erben C M, Berry R M, Schmidt C F, Turberfield A J. Science, 2005, 310(5754): 1661-1665
[105] Zhang C, Wu W M, Li X, Tian C, Qian H, Wang G S, Jiang W, Mao C D. Angew. Chem. Int. Ed., 2012, 51(32): 7999-8002
[106] Qi H, Shopsowitz K E, Hamad W Y, MacLachlan M J. J. Am. Chem. Soc., 2011, 133(11): 3728-3731
[107] Douglas S M, Dietz H, Liedl T, Hogberg B, Graf F, Shih W M. Nature, 2009, 459(7250): 414-418
[108] Kuzyk A, Schreiber R, Fan Z Y, Pardatscher G, Roller E M, Hgele A, Simmel F C, Govorov A O, Liedl T. Nature, 2012, 483(7389): 311-314
[109] Li Z T, Zhu Z N, Liu W J, Zhou Y L, Han B, Gao Y, Tang Z Y. J. Am. Chem. Soc., 2012, 134(7): 3322-3325
[110] Aldaye F A, Palmer A L, Sleiman H F. Science, 2008, 321(5897): 1795-1799
[111] Tanaka K, Clever G H, Takezawa Y, Yamada Y, Kaul C, Shionoya M, Carell T. Nat. Nanotechnol., 2006, 1(3): 190-194
[112] Condon A. Nat. Rev. Genet., 2006, 7(7): 565-575
[113] Clever G H, Kaul C, Carell T. Angew. Chem. Int. Ed., 2007, 46(33): 6226-6236
[114] Qu X G, Trent J O, Fokt I, Priebe W, Chaires J B. PNAS, 2000, 97(22): 12032-12037
[115] Shoji A, Kuwahara M, Ozaki H, Sawai H. J. Am. Chem. Soc., 2007, 129(5): 1456-1464
[116] Yu H J, Wang X H, Fu M L, Ren J S, Qu X G. Nucleic Acids Res., 2008, 36(17): 5695-5703
[117] Zhao C Q, Geng J, Feng L Y, Ren J S, Qu X G. Chem. Eur. J., 2011, 17(29): 8209-8215
[118] Michaud M, Jourdan E, Villet A, Ravel A, Grosset C, Peyrin E. J. Am. Chem. Soc., 2003, 125(28): 8672-8679
[119] Michaud M, Jourdan E, Ravelet C, Villet A, Ravel A, Grosset C, Peyrin E. Anal. Chem., 2004, 76(4): 1015-1020
[120] Ravelet C, Boulkedid R, Ravel A, Grosset C, Villet A, Fize J, Reyrin E. J. Chromatogr. A, 2005, 1076: 62-70
[121] Zhao C Q, Ren J S, Gregoliński J, Lisowski J, Qu X G. Nucleic Acids Res., 2012, 40(16): 8186-8196
[122] Feng L Y, Zhao C Q, Xiao Y, Wu L, Ren J S, Qu X G. Chem. Commun., 2012, 48(55): 6900-6902
[123] Feng L Y, Xu B L, Ren J S, Zhao C Q, Qu X G. Chem. Commun., 2012, 48(72): 9068-9070
[124] Roelfes G, Boersma A J, Feringa B L. Chem. Commun., 2006, (6): 635-637
[125] Coquière D, Feringa B L, Roelfes G. Angew. Chem. Int. Ed., 2007, 46(48): 9308-9311
[126] Boersma A J, Feringa B L, Roelfes G. Angew. Chem. Int. Ed., 2009, 121(18): 3396-3398
[127] Tang Z, Goncalves D P N, Wieland M, Marx A, Hartig J S. ChemBioChem, 2008, 9(7): 1061-1064
[128] Boersma A J, Coquière D, Geerdink D, Rosati F, Feringa B L, Roelfes G. Nat. Chem., 2010, 2(11):991-995
[129] Wang C H, Jia G Q, Zhou J, Li Y H, Liu Y, Lu S M, Li C. Angew. Chem. Int. Ed., 2012, 51(37): 9352-9355
[130] Gu Z Y, Yang C X, Chang N, Yan X P. Acc. Chem. Res., 2012, 45(5): 734-745
[1] Dongxue Han, Xue Jin, Wangen Miao, Tifeng Jiao, Pengfei Duan. Responsiveness of Excited State Chirality Based on Supramolecular Assembly [J]. Progress in Chemistry, 2022, 34(6): 1252-1262.
[2] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[3] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[4] Benzhan Zhu, Jing Zhang, Miao Tang, Chunhua Huang, Jie Shao. Mechanism Investigation on DNA Damage Induced by Carcinogenic Haloquinoid Disinfection Byproducts [J]. Progress in Chemistry, 2022, 34(1): 227-236.
[5] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[6] Kaiyu Zhang, Guowei Gao, Yansheng Li, Yu Song, Yongqiang Wen, Xueji Zhang. Development and Application of DNA Hydrogel in Biosensing [J]. Progress in Chemistry, 2021, 33(10): 1887-1899.
[7] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[8] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[9] Zihan Lin, Huang Chen, Jiawei Dong, Daohui Zhao, Libo Li. Nanopore-Based Biomolecular Detection [J]. Progress in Chemistry, 2020, 32(5): 562-580.
[10] Minghao Zhou, Shuang Jiang, Tianyong Zhang, Yonghong Shi, Xue Jin, Pengfei Duan. Construction and Optoelectrical Properties of Chiral Perovskite Nanomaterials [J]. Progress in Chemistry, 2020, 32(4): 361-370.
[11] Qian Zhou, Na Li, Kun Li, Xiaoqi Yu. Detection of 5-Formylpyrimidines in DNA Based on Chemoselective Labeling [J]. Progress in Chemistry, 2020, 32(11): 1634-1650.
[12] Chenghao Zhu, Junliang Zhang. Palladium Catalyzed Heck-Type Reaction of Organic Halides and Alkyl-Alkynes [J]. Progress in Chemistry, 2020, 32(11): 1745-1752.
[13] Jiangbo Liu, Lihua Wang, Xiaolei Zuo. Cell Membranes Functionalization Based on DNA [J]. Progress in Chemistry, 2019, 31(8): 1067-1074.
[14] Zhaoxuan Fan, Liang Zhao, Xueji Zhang. The Detection of Circulating Tumor DNA: From Digitalization to Sequencing [J]. Progress in Chemistry, 2019, 31(10): 1384-1395.
[15] Hongchuan Fan, Dong Yang, Pengfei Duan. Triplet-Triplet Annihilation-Based Upconversion in Supramolecular System [J]. Progress in Chemistry, 2018, 30(7): 879-887.