中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC121241 Previous Articles   Next Articles

• Review •

Synthesis and Applications of 1,8-Functionalized Heterofluorenes for Organic Electronics

Cao Jinzhu1, Wang Zhixiang1, Chen Runfeng*1,2, Li Huanhuan1, Zheng Chao1, Huang Wei*2   

  1. 1. Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China;
    2. Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Technology, Nanjing 211816, China
  • Received: Revised: Online: Published:
PDF ( 1075 ) Cited
Export

EndNote

Ris

BibTeX

Heterofluorenes, achieved by substituting the sp3-hybridized carbon of fluorene with oxygen, sulfur, silicon, nitrogen, phosphor etc., are a series of very interesting optoelectronic materials. They have not only many highly effective ways to modify the electronic structures and properties through the particular interactions between the heteroatom and the π-conjugated system, but also show different modification properties at different substitution positions due to the influence of the heteroatoms. 1,8-Functionalization inspires new properties from widely used materials although the synthesis is always difficult. Owing to the wide spread progress of heterofluorenes and the 1,8-functionalization strategy, 1,8-functionalized heterofluorenes have received increasing attention in organic optical and electronic materials and devices recently. Herein, we summarized the basic principles of the molecular design, material synthesis, structure-property relations, and optoelectronic device applications of 1,8-functionalized heterofluorenes. The different synthetic methods of various 1,8-functionalized heterofluorenes are reviewed and presented according to different effects of different heteroatoms. Besides, the applications of 1,8-functionalized heterofluorenes as host materials for phosphorescent organic light emitting diodes, as electroluminescent materials for organic light emitting diodes, as photovoltaic materials for solar cells, and as functional ligands for organic metals are discussed in detail. Finally, the existing key problems and the future development of 1,8-functionalized heterofluorenes are also outlined and suggested. Contents
1 Introduction
2 Synthesis of 1,8-functionalized heterofluorenes
2.1 Direct synthetic methods
2.2 Indirect synthetic methods
3 Applications of 1,8-functionalized heterofluorenes
3.1 Organic electroluminescent materials
3.2 Photovoltaic materials
3.3 Ligands
4 Conclusion and outlook

CLC Number: 

[1] Gross M, Müller D C, Nothofer H G, Scherf U, Neher D, Brauchle C, Meerholz K, Nothofer H G. Nature, 2000, 405: 661-665
[2] Sun Y R, Giebink N C, Kanno H, Ma B W, ThompsonM E, Forrest S R. Nature, 2006, 440(7086): 908-912
[3] Lewis N S. Science, 2007, 315(5813): 798-801
[4] Kim J Y, Lee K, Coates N E. Science, 2007, 317: 222-225
[5] Brabec C J, Sariciftci N S, Hummelen J C. Adv. Funct. Mater., 2001, 11: 15-26
[6] Coakley K M, McGehee M D. Chem. Mater., 2004, 16: 4533-4542
[7] 何有军(He Y J), 李永舫(Li Y F). 化学进展(Prog. Chem.), 2009, 21(11): 2303-2318
[8] Dimitrakopoulos C D, Malenfant P R L. Adv. Mater., 2002, 14: 99-117
[9] Liu Y, Miao Q, Zhang S W, Huang X B, Zheng L F, Cheng Y X. Macromol. Chem. Phys., 2008, 209: 685-694
[10] Zeng G, Yu W L, Chua S J, Huang W. Macromolecules, 2002, 35 (18): 6907-6914
[11] Chen P, Yang G Z, Huang W. Polym. Int., 2006, 55(5): 473-490
[12] Chen R F, Zheng C, Fan Q L, Huang W. J. Comput. Chem., 2007, 28(13): 2091-2101
[13] Chen R F, Zhu R, Fan Q L, Huang W. Org. Lett., 2008, 10(13): 2913-2916
[14] Brunner K, Dijken V A, Borner H, Bastiaansen J J A M, Kiggen N M M, Langeveld B M W. J. Am. Chem. Soc., 2004, 126 (19): 6035-6042
[15] Chan K L, McKiernan M J, Towns C R, Holmes A B. J. Am. Chem. Soc., 2005, 127 (21): 7662-7663
[16] Mak C S K, Hayer A, Pascu S I, Watkins S E, Holmes A B, Kohler A, Friend R H. Chem. Commun., 2005, (7): 4708-4710
[17] Mo Y Q, Tian R Y, Shi W, Cao Y. Chem. Commun., 2005, 4925-4926
[18] Chan K L, Watkins S E, Mak C S K, McKiernan M J, Towns C R, Pascu S I, Holmes A B. Chem. Commun., 2005, (46): 5766-5768
[19] Chen J W, Cao Y. Macromol. Rapid Commun., 2007, 28: 1714-1742
[20] Yan M K, Tao Y, Chen R F, Zheng C, An Z F, Huang W. RSC Advances, 2012, 2: 7860-7867
[21] Morin J F, Leclerc M, Ades D, Siove A. Macromol. Rapid Commun., 2005, 26: 761-778
[22] Dao L H, Leclerc M, Guay J, Chevalier J W. Synth. Met., 1989, 29: 377-382
[23] Morin J F, Leclerc M. Macromolecules, 2001, 34: 4680-4682
[24] Michinobu T, Osako H, Shigehara K. Macromolecules, 2009, 42: 8172-8180
[25] Chen R F, Xie G H, Zhao Y, Zhang S L, Yin J, Liu S Y, Huang W. Org. Electron., 2011, 12: 1619-1624
[26] 许运华(Xu Y H), 彭俊彪(Peng J B), 曹镛(Cao Y). 化学进展(Prog. Chem.), 2006, 18(4): 389-398
[27] Piatek P, Lynch V M, Sessler J L. J. Am. Chem. Soc., 2004, 126: 16073-16076
[28] Chmielewski M J, Charon M, Jurczak J. Org. Lett., 2004, 6: 3501-3504
[29] Thangadurai T D, Singh N J, Hwang I C. J. Org. Chem., 2007, 72: 5461-5464
[30] Chen R F, Liu L Y, Fu H, Zheng C, Xu H, Fan Q L, Huang W. J. Phys. Chem. B, 2011, 115(2): 242-248
[31] Schwartz E B, Knobler C B, Cram D J. J. Am. Chem. Soc., 1992, 114: 10775-10784
[32] Korang J, Grither W R, McCulla R D. J. Am. Chem. Soc., 2010, 132: 4466-4476
[33] Han C M, Xie G H, Xu H, Zhang Z S, Yu D H, Zhao Y, Yan P F, Deng Z P, Li Q, Liu S Y. Chem. Eur. J., 2011, 17: 445-449
[34] Han C M, Xie G H, Li J, Zhang Z S, Xu H, Deng Z P, Zhao Y, Yan P F, Liu S Y. Chem. Eur. J., 2011, 17: 8947-8956
[35] Ren Z J, Zhang R B, Yan S K. J. Mater. Chem., 2011, 21: 7777-7781
[36] Wang L, Wu Z Y, Wong W Y, Cheah K W, Huang H. Org. Electron., 2011, 12: 595-601
[37] Saito M, Tanikawa T, Tajima T, Guo J D, Nagase S. Tetrahedron Lett., 2010, 51: 672-675
[38] Britovsek G J P, Gibson V C, Hoarau O D, Spitzmesser S K, White A J P, Williams D J. Inorg. Chem., 2003, 42: 3454-3465
[39] Gibson V C, Spitzmesser S K, White A J P, Williams D J. Dalton Trans., 2003, 13: 2718-2727
[40] Mudadu M S, Singh A N, Thummel R P. J. Org. Chem., 2008, 73: 6513-6520
[41] Michinobu T, Osako H, Shigehara K. Macromol. Rapid Commun., 2008, 29: 111-116
[42] Fujita H, Michinobu T. Chem. Phys., 2012, 213: 447-457
[43] Widhalm M, Mereiter K. Tetrahedron: Asymmetry, 2006, 17: 1355-1369
[44] Thansandote P, Lautens M. Chem. Eur. J., 2009, 15: 5874-5883
[45] Wei Y, Yoshikai N. Org. Lett., 2011, 13: 5504-5507
[46] Xu H, Fan L L. Chem. Pharm. Bull., 2008, 56: 1496-1498
[47] Ogawa S, Tajiri Y, Furukawa N. Bull. Chem. Soc. Jpn., 1991, 64: 3182-3184
[48] Wehmschulte R J, Khan M A, Hossain S I. Inorg. Chem., 2001, 40: 2756-2762
[49] Diaz A A, Young J D, Khan M A, Wehmschulte R J. Inorg. Chem., 2006, 45: 5568-5575
[50] Diaz A A, Buster B, Schomlsch D, Khan M A, Baum J C, Wehmschulte R J. Inorg. Chem., 2008, 47: 2858-2863
[51] Geramita K, McBee J, Tilley T D. J. Org. Chem., 2009, 74: 820-829
[52] Li B J, Tian S L, Fang Z, Shi Z H. Angew. Chem. Int. Ed., 2008, 47: 1115-1118
[53] Li Z P, Li C J. J. Am. Chem. Soc., 2005, 127: 3672-3673
[54] Li Z P, Li C J. J. Am. Chem. Soc., 2005, 127: 6968-6969
[55] Zhang S L, Chen R F, Yin J, Liu F, Jiang H J, Shi N E, An Z F, Ma C, Liu B, Huang W. Org. Lett., 2010, 15(12): 3438-3441
[56] 陈润锋(Chen R F), 郑超(Zheng C), 范曲立(Fan Q L), 黄维(Huang W). 化学进展(Prog. Chem.), 2010, 22(4): 696-705
[57] Romero B, Schaer M, Leclerc M, Ades D, Siove A, Zuppiroli L. Synth. Met., 1996, 80: 271-277
[58] Jenekhe S A, Yi S J. Appl. Phys. Lett., 2000, 77: 2635- 2637
[59] Boudreault P L T, Blouin N, Leclerc M. Adv. Polym. Sci., 2008, 212: 99-124
[60] Blouin N, Leclerc M. Acc. Chem. Res., 2008, 41: 1110- 1119
[61] Yamaguchi S, Shirasaka T, Akiyama S, Tamao K. J. Am. Chem. Soc., 2002, 124 (30): 8816-8817
[62] Wakamiya A, Mishima K, Ekawa K, Yamaguchi S. Chem. Commun., 2008, (5): 579-581
[63] Mo Y Q, Tian R Y, Shi W, Cao Y. Chem. Commun., 2005, (39): 4925-4926
[64] Wang E, Li C, Pieng J, Cao Y. J. Polym. Sci. PartA: Polym. Chem., 2007, 45: 4941-4949
[65] Boudreault P L T, Michaud A, Leclerc M. Macromol. Rapid Commun., 2007, 28: 2176-2179
[66] Chen R F, Fan Q L, Liu S J, Zhu R, Pu K Y, Huang W. Synth. Met., 2006, 156: 1161-1167
[67] Kobayashi S, Noguchi T, Tsubata Y, Kitano M, Doi S, Ueoka T, Nakazono A. JP2003 231741
[68] Geramita K, McBee J, Tilley T D. J. Org. Chem., 2009, 74(2): 820-829
[69] Geramita K, McBee J, Tao Y F. Chem. Commun., 2008, (41): 5107-5109
[70] Makioka Y, Hayashi T, Tanaka M J. Chem. Lett., 2004, 33(1): 44-45
[71] Chen F C, Chang S C, He G F. J. Poly. Sci. Pol. Phys., 2003, 41: 2681-2690
[72] Yin J, Zhang S L, Chen R F, Ling Q D, Huang W. Phys. Chem. Chem. Phys., 2010, 12(47): 15448-15458
[73] Han C M, Zhang Z S, Xu H, Yue S Z, Li J, Yan P R, Deng Z P, Zhao Y, Yan P F, Liu S Y. J. Am. Chem. Soc., 2012, 134: 19179-19188
[74] Forrest S R. Nature, 2004, 428: 911-918
[75] Chen J W, Cao Y. Macromol. Rapid Commun., 2007, 28: 1714-1742
[76] Whittell G R, Manners I. Adv. Mater., 2007, 19(21): 3439-3468
[77] Mudadu M S, Singh A N, Thummel R P. J. Org. Chem., 2008, 73: 6513-6520
[78] Arnold L, Norouzi-Arasi H, Wagner M, Enkelmann V, Müllen K. Chem. Commun., 2010, 47: 970-972
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[7] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[8] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[9] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[10] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[13] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[14] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[15] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.