中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC121237 Previous Articles   Next Articles

Organic Radical Batteries

Yang Xiaodong, Qu Jinqing*   

  1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
  • Received: Revised: Online: Published:
PDF ( 1696 ) Cited
Export

EndNote

Ris

BibTeX

The organic radical battery(ORB) is a new class of rechargeable battery, which use stable organic radical polymers as an electrode-active materials in an electrode of batteries. ORB displays a rapid charging capability and good cycleability due to the high reactivity and reversibility of the radical reaction. Additionally, organic radical polymer is appropriate for forming the flexible thin film battery. ORB contains no harmful heavy metals, it charges and discharges by the oxidation and reduction of radical species such as a nitroxide radical, which is different from that of the Li-ion battery depend on deintercalation/intercalation of the lithium ions, ORB thus opens up a new field of ubiquitous devices with environmentally friendly battery. Because of its unique features, the ORB has a wide range of potential applications as a power source including laptop PCs, smart cards, sensors, intelligent papers, radio frequency identification tags and micro-sized devices. Present paper reviews the progress of organic radical battery, including the structures and compositions, charge/discharge reaction mechanisms and characteristics. At the same time, the developments of the high performance organic radical battery are discussed including the multi-stage charge/discharge characteristics of radical polymers increased the discharge capacity of the battery and the electrode material of nano-doped to improve the battery cycle stability. The development trends of high energy-density and environmental benign organic radical battery are also pointed out. Contents
1 Introduction
2 Structural, characteristics and charge/discharge mechanism of ORB
3 Progress in organic radical battery
4 Development of high energy density of ORB
4.1 Nano-doping of electron materials
4.2 Multi-stage charge and discharge properties
4.3 Design of high capacity of ORB
5 Conclusion

CLC Number: 

[1] Milczarek G, Inganäs O. Science, 2012, 335:1468-1471
[2] Nishide H, Oyaizu K. Science, 2008, 319:737-738
[3] Qu J Q, Katsumata T, Satoh M, Wada J, Masuda T. Macromolecules, 2007, 40:3136-3144
[4] Qu J Q, Katsumata T, Satoh M, Wada J, Igarashi J, Mizoguchi K, Masuda T. Chem. Eur. J., 2007, 13:7965-7973
[5] Qu J Q, Katsumata T, Satoh M, Wada J, Masuda T. Polymer, 2009, 50:391-396
[6] Katsumata T, Qu J Q, Shiotsuki M, Satoh M, Wada J, Igarashi J, Mizoguchi K, Masuda T. Macromolecules, 2008, 41:1175-1183
[7] Aydín M, Esat B, Kílí C, Köse M E, Ata A, Yílmaz F. European Polymer Journal, 2011, 47:2283-2294
[8] Nakahara K, Oyaizu K, Nishide H. J. Mater. Chem., 2012, 22:13669-13673
[9] Hung M K, Wang Y H, Lin C H, Lin H C, Lee J T. J. Mater. Chem., 2012, 22:1570-1577
[10] Kato F, Kikuchi A, Okuyama T, Oyaizu K, Nishide H. Angew. Chem. Int. Ed., 2012, 51:10177-10180
[11] Xu W, Read A, Koech P K, Hu D H, Wang C M, Xiao J, Padmaperuma A B, Graff G L, Liu J, Zhang J G. J. Mater. Chem., 2012, 22:4032-4039
[12] Kim Y, Jo C, Lee J, Lee C W, Yoon S. J. Mater. Chem., 2012, 22:1453-1458
[13] Takahashi Y, Hayashi N, Oyaizu K, Honda K, Nishide H. Polym. J., 2008, 40:763-767
[14] Choi W, Harada D, Oyaizu K, Nishide H. J. Am. Chem. Soc., 2011, 133: 19839-19843
[15] Yoshihara S, Isozumi H, Kasai M, Yonehara H, Ando Y, Oyaizu K, Nishide H. J. Phys. Chem. B, 2010, 114:8335-8340
[16] Oyaizu K, Nishide H. Adv. Mater., 2009, 21:2339-2344
[17] Gao X P, Yang H X. Energy Environ. Sci., 2010, 3:174-189
[18] Nakahara K, Iwasa S, Satoh M, Morioka Y, Iriyama J, Suguro M, Hasegawa E. Chemical Physics Letters, 2002, 359:351-354
[19] Nishide H, Suga T. The Electrochemical Society Interface, Winter 2005, 14(4):32-36
[20] Nakahara K, Oyaizu K, Nishide H. Chem. Lett., 2011, 40: 222-227
[21] Iwasa S, Yasui M, Nishi T, Nakano K. NEC Technical Journal, 2012, 7:102-106
[22] 赵瑞瑞(Zhao R R), 朱利敏(Zhu L M), 杨汉西(Yang H X). 化学进展(Progress in Chemistry), 2011, 23(2):302-309
[23] Nakahara K, Iwasa S, Iriyama J, Morioka Y, Suguro M, Satoh M, Cairns E J. Electrochimica Acta, 2006, 52:921-927
[24] Cheng Y Y, Li C C, Lee J T. Electrochimica Acta, 2012, 66: 332-339
[25] Bugnon L, Morton C J H, Novak P, Vetter J, Nesvadba P. Chem. Mater., 2007, 19:2910-2914
[26] Kim J K, Ahn J H, Cheruvally G, Chauhan G S, Choi J W, Kim D S, Ahn H J, Lee S H, Song C E. Met. Mater. Int., 2009, 15:77-82
[27] Satoh M. NEC Journal of Advanced Technology, 2004, 2:262-263
[28] López Peña H A, Hernaández-Muñoz L S, Frontana-Uribe B A, González F J, González I, Frontana C, Cardoso J. J. Phys. Chem. B, 2012, 116: 5542-5550
[29] Yoshihara S, Katsuta H, Isozumi H, Kasai M, Oyaizu K, Nishide H. Journal of Power Sources, 2011, 196:7806-7811
[30] Lin C H, Chau C M, Lee J T. Polym. Chem., 2012, 3:1467-1474
[31] Suga T, Ohshiro H, Sugita S, Oyaizu K, Nishide H. Adv. Mater., 2009, 21:1627-1630
[32] Nakahara K, Iriyama J, Iwasa S, Suguro M, Satoh M, Cairns E J. Journal of Power Sources, 2007, 165:870-873
[33] Morita1 Y, Nishida S, Murata T, Moriguchi M, Ueda A, Satoh M, Arifuku K, Sato K, Takui T. Nat. Mater., 2011, 10:947-951
[34] Dai Y, Zhang Y X, Gao L, Xu G F, Xie J Y. Journal of the Electrochemical Society, 2011, 158:A291-A295
[35] Chikushi N, Yamada H, Oyaizu K, Nishide H. Sci. China Chem., 2012, 55:822-829
[36] Koshika K, Chikushi N, Sano N, Oyaizu K, Nishide H. Green Chem., 2010, 12:1573-1575
[37] Oyaizu K, Suga T, Yoshimura K, Nishide H. Macromolecules, 2008, 41:6646-6652
[38] Oyaizu K, Kawamoto T, Suga T, Nishide H. Macromolecules, 2010, 43:10382-10389
[39] Suguro M, Mori A, Iwasa S, Nakahara K, Nakano K. Macromol. Chem. Phys., 2009, 210:1402-1407
[40] Qu J Q, Fujii T, Katsumata T, Suzuki Y, Shiotsuki M, Sanda F, Satoh M, Wada J, Masuda T. J. Poly. Sci.Part A: Poly. Chem., 2007, 45:5431-5445
[41] Suguro M, Iwasa S, Kusachi Y, Morioka Y, Nakahara K. Macromol. Rapid Commun., 2007, 28: 1929-1933
[42] Suga T, Sugita S, Ohshiro H, Oyaizu K, Nishide H. Adv. Mater., 2011, 23:751-754
[43] Zhang X H, Li H Q, Li L T, Lu G L, Zhang S, Gu L N, Xia Y Y, Huang X Y. Polymer, 2008, 49:3393-3398
[44] Nesvadba P, Bugnon L, Maire P, Novak P. Chem. Mater., 2010, 22:783-788
[45] Feng J K, Cao Y L, Ai X P, Yang H X. Journal of Power Sources, 2008, 177:199-204
[46] Suga T, Pu Y J, Kasatori S, Nishide H. Macromolecules, 2007, 40:3167-3173
[47] Qu J Q, Khan F Z, Satoh M, Wada J, Hayashi H, Mizoguchi K, Masud T. Polymer, 2008, 49:1490-1496
[48] Toru K, Qu J Q, Shiotsuki M, Wada J, Satoh M, Masuda T. Organic Radical Battery Property of the Polymers Bearing TEMPO Moietites. Polymer Preprints, 56th SPSJ Symposium on Macromolecules, Japan: SPSJ, 2007. 56(1): 1428
[49] Guo W, Sua J, Li Y H, Wan L J, Guo Y G. Electrochimica Acta, 2012, 72:81-86
[1] Tingting Heng, Hui Zhang, Mingxue Chen, Xin Hu, Liang Fang, Chunhua Lu. Graft Modification of PVDF-Based Fluoropolymers [J]. Progress in Chemistry, 2021, 33(4): 596-609.
[2] Lianwei Sun, Zhonghe Sun, Xue Wang, Lin Xu, Anchao Feng, Liqun Zhang. Synthesis of Polyethylene and Polyhalogenated Olefin by Controlled/“Living” Radical Polymerization [J]. Progress in Chemistry, 2020, 32(6): 727-737.
[3] Shengnan Zhang, Dongmei Han, Shan Ren, Min Xiao, Shuanjin Wang, Yuezhong Meng. Immobilization Strategies of Organic Electrode Materials [J]. Progress in Chemistry, 2020, 32(1): 103-118.
[4] Huiya Wang, Limin Zhao, Fang Zhang, Dannong He. High-Performance Lithium-Ion Secondary Battery Membranes [J]. Progress in Chemistry, 2019, 31(9): 1251-1262.
[5] Ning Li, Xin Hu, Liang Fang, Jiahui Kou, Yaru Ni, Chunhua Lu. Organocatalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2019, 31(6): 791-799.
[6] Zhi Li, Houliang Tang, Anchao Feng, San H. Thang. Synthesis of Zwitterionic Polymers by Living/Controlled Radical Polymerization and Its Applications [J]. Progress in Chemistry, 2018, 30(8): 1097-1111.
[7] Kai Han, Nuo Li, Hongqi Ye, Kai Han*. Synthesis of Two-Dimensional MXene and Their Applications in Electrochemical Energy Storage [J]. Progress in Chemistry, 2018, 30(7): 932-946.
[8] Anchao Feng, Xiangyu Pan, Xiaohu Wei, Anchao Feng*, San H. Thang*. Stimuli Responsive Gradient Polymers [J]. Progress in Chemistry, 2017, 29(10): 1184-1194.
[9] Li Jiaoyang, Wang Li, He Xiangming. Phosphorus-Based Composite Anode Materials for Secondary Batteries [J]. Progress in Chemistry, 2016, 28(2/3): 193-203.
[10] He Fuxi, Tang Gang, Min Xiaoyan, Hu Minqi, Shao Lidong, Bi Yunmei. Living/Controlled Free Radical Polymerization of N-Vinyl Caprolactam [J]. Progress in Chemistry, 2016, 28(2/3): 328-336.
[11] Chen Siyuan, Dong Xu, Zha Liusheng. Inorganic/Organic Core-Shell Composite Nanoparticles by Surface-Initiated Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2015, 27(7): 831-840.
[12] Mu Siyang, Guo Jing, Yu Chunfang, Gong Yumei, Zhang Sen. Synthesis and Applications of ATRP Macromolecular Initiator [J]. Progress in Chemistry, 2015, 27(5): 539-549.
[13] Li Bin, Yu Bo, Ye Qian, Zhou Feng. External Stimuli Regulated Surface-Initiated Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2015, 27(2/3): 146-156.
[14] He Xiaoyan*, Zhou Wenrui, Xu Xiaojun, Yang Wu*. Preparation and Application of Zwitterionic Polymers [J]. Progress in Chemistry, 2013, 25(06): 1023-1030.
[15] Li Guang, Bai Ruke. Synthesis of Azide Polymers [J]. Progress in Chemistry, 2011, 23(8): 1692-1699.
Viewed
Full text


Abstract

Organic Radical Batteries