中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC121230 Previous Articles   Next Articles

• Review •

Nitrogen-Doped Graphene

Chen Xu, He Daping, Mu Shichun*   

  1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • Received: Revised: Online: Published:
PDF ( 3152 ) Cited
Export

EndNote

Ris

BibTeX

Some outstanding properties of nitrogen-doped graphene are sketched, and the latest synthesis methods, characteristic techniques and applications of nitrogen-doped graphene are reviewed. The synthesis methods of nitrogen-doped graphene mainly include chemical vapor deposition, heat treatment in ammonia atmosphere, nitrogen plasma discharge method, arc-discharge of carbon electrodes, electrothermal synthesis, solvothermal synthesis and conversion of N-containing precursors. Meantime, various characterization techniques, such as XPS, Raman, TEM, SEM and AFM, are introduced. Subsequently, the promising applications of nitrogen-doped graphene in the fields of lithium-ion batteries, lithium-air batteries and supercapacitor electrodes and oxygen reduction catalysts of fuel cells are present. Finally, some possible scientific issues involving nitrogen-doped graphene are briefly reviewed. Contents
1 Introduction
2 Types of nitrogen-doped graphene
3 Synthesis of nitrogen-doped graphene
3.1 Chemical vapor deposition method
3.2 Heat treatment in ammonia atmosphere
3.3 Nitrogen plasma discharge
3.4 Arc-discharge of carbon electrodes
3.5 Electrothermal synthesis
3.6 Solvothermal synthesis
3.7 Conversion of N-containing precursors
3.8 Other methods
4 Characterization for studying nitrogen-doped graphene
4.1 X-ray photoelectron spectroscopy
4.2 Raman spectroscopy
4.3 Other characterization techniques
5 Applications
5.1 Lithium-ion battery electrode materials
5.2 Lithium-air battery electrode materials
5.3 Catalyst of fuel cell oxygen reduction
5.4 Supercapacitor electrode materials
6 Existing problems
6.1 Limit of nitrogen atomic concentration on the carbon surface
6.2 Catalytic mechanism of oxygen reduction
7 Other issues
8 Conclusion

CLC Number: 

[1] Novoselov K, Geim A, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666-669
[2] Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zinmey E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Nature, 2006, 442: 282-286
[3] Dikin D A, Stankovich S, Zimney E J, Richard D, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T, Ruoff R S. Nature, 2007, 448: 457-460
[4] Bunch J S, Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G, Mceuen P L. Science, 2007, 315: 490-493
[5] Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S. Nat. Mater., 2007, 6: 652-655
[6] Ramanathan T, Abdala A A, Stankovich S, Dikin D A, Herrera-Alonso M, Piner R D, Adamson D H, Schniepp H C, Chen X, Ruoff R S, Nguyen S T, Aksay I A, Prud'Homme R K, Brinson L C. Nat. Nanotechnol., 2008, 3: 327-331
[7] Gomez-Navarro C, Burghard M, Kern K. Nano Lett., 2008, 8: 2045-2049
[8] Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Nat. Nanotechnol., 2008, 3: 101-105
[9] Yoo E, Kim J, Hosono E, Zhou H S, Kudo T, Honma I. Nano Lett., 2008, 8: 2277-2282
[10] Stoller M D, Park S J, Zhu Y W, An J, Ruoff R S. Nano Lett., 2008, 8: 3498-3502
[11] Vivekchand S R C, Rout C S, Subrahmanyam K S, Govindaraj A, Rao C N R. J. Chem. Sci., 2008, 120: 9-13
[12] Partoens B, Peeters F M. Phys. Rev. B, 2006, 74(7): art. no. 075404
[13] Geim A, Novoselov K. Nat. Mater., 2007, 6(3): 183-191
[14] Lee C, Wei X, Kysar J, Hone J. Science, 2008, 321(5887): 385-388
[15] Novoselov K, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K. Science, 2007, 315(5817): 137
[16] Avouris P, Chen Z, Perebeinos V. Nat. Nanotechnol., 2007, 2(10): 605-615
[17] Zhang Y, Tan Y, Stormer H L, Kim P. Nature, 2005, 438(7065): 201-204
[18] Wang X R, Li X L, Zhang L, Yoon Y, Weber P K, Wang H, Guo J, Dai H J. Science, 2009, 324: 768-771
[19] White C T, Li J, Mintmire J W. Appl. Phys. Lett., 2007, 91(11): art. no. 112108
[20] Hulicova D, Kodama M, Hatori H. Chem. Mater., 2006, 18 (9): 2318-2326
[21] Shao Y Y, Sui J H, Yin G P, Gao Y Z. Appl. Catal. B, 2008, 79(1): 89-99
[22] Wei D C, Liu Y Q, Wang Y, Zhang H, Huang L, Yu G. Nano Lett., 2009, 9(5): 1752-1758
[23] Zhou C W, Kong J, Yenilmez E, Dai H J. Science, 2000, 290: 1552-1555
[24] Ewels C P, Glerup M J. Nanosci. Nanotechnol., 2005, 5: 1345-1363
[25] Reina A, Jia X T, Ho J, Nezich D, Son H B, Bulovic V, Dresselhaus M S, Kong J. Nano Lett., 2009, 9: 30-35
[26] Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, Guo X, Du Z. J. Phys. Chem. B, 2003, 107: 3712-3718
[27] Che G, Lakshm B B, Martin C R, Fisher E R, Ruoff R S. Chem. Mater., 1998, 10: 260-267
[28] Lee D H, Lee W J, Kim S O. Nano Lett., 2009, 9(4), 1427-1432
[29] Wei D C, Liu Y Q, Wang Y, Zhang H, Huang L, Yu G. Nano Lett., 2009, 9(5): 1752-1758
[30] Qu L T, Liu Y, Baek J B, Dai L M. ACS Nano, 2010, 4(3): 1321-1326
[31] Luo Z Q, Lim S H, Tian Z Q, Shang J Z, Lai L F, MacDonald B, Fu C, Shen Z X, Yu T, Lin J Y. J. Mater. Chem., 2011, 21: 8038-8044
[32] Gao H, Song L, Guo W H. Carbon, 2012, 50(12): 4476-4482
[33] Zhang C, Fu L, Liu N, Liu M, Wang Y, Liu Z. Adv. Mater., 2011, 23 (8): 1020-1024
[34] Xue Y Z, Wu B, Jiang L, Guo Y L, Huang L P, Chen J Y, Tan J H, Geng D C, Luo B R, Hu W P, Yu G, Liu Y Q. J. Am. Chem. Soc., 2012, 134: 11060-11063
[35] Sheng Z H, Tao L, Chen J J, Bao W J, Wang F B, Xia X H. ACS Nano, 2011, 5 (6): 4350-4358
[36] Dai H J, Li X L, Wang H L, Robinson J T, Sanchez H, Diankov G. J. Am. Chem. Soc., 2009, 131(43): 15939-15944
[37] Wen Z H, Wang W C, Mao S, Bo Z, Kim H, Cui S, Li G, Feng X, Chen J. Adv. Mater., 2012, 24: 5517-5641
[38] He D P, Jiang Y L, Pan M, Mu S C. Appl. Catal. B Environ., 2013, 132/133: 379-388
[39] Guo B D, Liu Q, Chen E D. Nano Lett., 2010, 10(12): 4975-4980
[40] Wang Y, Shao Y Y, Matson D W, Li J, Lin Y. ACS Nano, 2010, 4(4): 1790-1798
[41] Shao Y, Zhang S, Engelhard M H, Li G, Shao G, Wang Y, Liu J, Aksay I A, Lin Y. J. Mater. Chem., 2010, 20(35): 7491-7496
[42] Jafri R I, Rajalakshmi N, Ramaprabhu S. J. Mater. Chem., 2010, 20: 7114-7117
[43] Lin Y C, Lin C Y, Chiu P W. Appl. Phys. Lett., 2010, 96(13): art. no. 133110
[44] Suezawa M S, Sumino K J, Harada H F, Abe T. J. Appl. Phys., 1986, 25(10): 859-861
[45] Panchakarla L S, Ubrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V, Rao C N R. Adv. Mater., 2009, 21: 4726-4730
[46] Li N, Wang Z Y, Zhao K K, Shi Z J, Gu Z N, Xu S K. Carbon, 2010, 48(1): 255-259
[47] Wang X R, Li X L, Zhang L, Yoon Y, Weber P K, Wang H L, Guo J, Dai H J. Science, 2009, 324 (5928): 768-771
[48] Deng D H, Pan X L, Yu L, Cui Y, Jiang Y P, Qi J, Li W X, Fu Q, Ma X C, Xue Q K, Sun G Q, Bao X H. Chem. Mater., 2011, 23(5): 1188-1193
[49] Lefèvre M, Proietti E, Jaouen F, Dodelet J P. Science, 2009, 324(3): 71-74
[50] Wu G, Karren L M, Christina M, Zelenay P. Science, 2011, 332: 443-447
[51] Jiang K, Jia Q M, Xu M L. J. Power Sources, 2012, 219: 249-252
[52] Liu G, Li X, Ganesan P, Popov P, Branko N. Electrochim. Acta, 2010, 55: 2853-2858
[53] Tan Y M, Xu C F, Chen G X. Adv. Funct. Mater., 2012, 21: 4401-4619
[54] Nemanja G, Igor A P, Slavko V M. J. Power Sources, 2012, 220: 306-316
[55] Liu Q, Zhang H Y, Zhong H W. Electrochim. Acta, 2012, 81: 313-320
[56] Reddy A L M, Srivastava A, Gowda S R, Gullapalli H, Dubey M, Ajayan P M. ACS Nano, 2010, 4(11): 6337-6342
[57] Xin Y C, Liu J G, Xiao J. Electrochim. Acta, 2012, 60(15): 354-358
[58] Theanne S, Dennis N, Lucia P. Nano Lett., 2012, 12: 4025-4031
[59] Rao C V, Cabrera C R, Ishikawa Y. J. Phys. Chem. Lett., 2010, 1(18): 2622-2627
[60] Dubin S, Gilje S, Wang K, Hall A S, Farrar J, Varshneya R, Yang Y, Kaner R B. ACS Nano, 2010, 4(7): 3845-3852
[61] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S. Carbon, 2007, 45(7): 1558-1565
[62] Canado L G, Pimenta M A, Neves B R A, Dantas M S S, Jorio A. Phys. Rev. Lett., 2004, 93: art. no. 247401
[63] Dresselhaus M S, Dresselhaus G, Saito R, Jorio A. Phys. Rep., 2005, 409(2): 47-99
[64] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C. Phys. Rev. Lett., 2006, 97: art. no. 187401
[65] Johnson C A, Patrick J W, MarkTuinstra K. Fuel, 1986, 65: 1284-1290
[66] Nemanich R J, Solin S A, Martin R M. Phys. Rev. B, 1979, 20(2): 392-401
[67] Wu P, Qian Y, Du P, Zhang H, Cai C. J. Mater. Chem., 2012, 22: 6402-6412
[68] Cancado L G, Takai K, Enoki T, Endo M, Kim Y A, Mizusaki H, Jorio A, Coelho L N, Magalhaes-Paniago R, Pimenta M A. Appl. Phys. Lett., 2006, 88: art. no. 163106
[69] Zhao L, He R, Rim K T, Schiros T, Kim K S, Zhou H, Gutiérrez C, Chockalingam S P, Arguello C J, Pálová L, Nordlund D, Hybertsen M S, Reichman D R, Heinz T F, Kim P, Pinczuk A, Flynn G W, Pasupathy A N. Science, 2011, 333: 999-1003
[70] Ferrari A C. Solid State Commun., 2007, 143(1/2): 47-57
[71] Zheng B, Hermet P, Henrard L. ACS Nano, 2010, 4(7): 4165-4173
[72] Jin Z, Yao J, Kittrell C. ACS Nano, 2011, 5(5): 4112-4117
[73] Michael A I, Venkataramanan S, Donna M D, Mamangun, Ding Y J, James F, Gregory A S. Chem. Mater., 2009, 21(14): 3332-3336
[74] Wu Z S, Ren W, Xu L, Zhou G, Yin L C, Li F, Cheng H M. ACS Nano, 2011, 5(7): 5463-5471
[75] Reddy A L M, Srivastava A, Gowda S R, Gullapalli H, Dubey M, Ajayan P M. ACS Nano, 2010, 4(11): 6337-6342
[76] Wang H B, Zhang C J, Liu Z H, Wang L, Han P, Xu H, Zhang K, Dong S, Yao J, Cui G. J. Mater. Chem., 2011, 21(14): 5430-5434
[77] Girishkumar G, McCloskey B, Luntz A C, Swanson S, Wilcke W. J. Phys. Chem. Lett., 2010, 1: 2193-2203
[78] McCloskey B D, Bethune D S, Shelby R M, Girishkumar G, Luntz A C. J. Phys. Chem. Lett., 2011, 2(10): 1161-1166
[79] Williford R E, Zhang J G. J. Power Sources, 2009, 194(2): 1164-1170
[80] Trana C, Yang X Q, Qu D. J. Power Sources, 2010, 195: 2057-2063
[81] Mitchell R R, Gallant B M, Thompson C V, Shao H Y. Energy Environmental Sci., 2011, 4: 2952-2958
[82] Li Y, Wang J, Li X, Geng D, Li R, Sun X. Chem. Commun., 2011, 47: 9438-9440
[83] Yoo E, Nakamura J J, Zhou H. Energy Environmental Sci., 2012, 5: 6928-6932
[84] Kichambare P, Rodrigues S, Kumar J. ACS Appl. Mater., 2012, 4 (1): 49-52
[85] Sun X L, Li Y, Wang J, Li X, Geng D, Banis M N, Li R. Electrochem. Commun., 2012, 18: 12-15
[86] Hou J, Yang M, Ellis M, Moore R, Yi B. Phys. Chem. Chem. Phys., 2012, 14: 13487-13501
[87] Cao R, Lee J S, Liu M, Cho J. Advanced Energy Mater., 2012, 2(7): 701-910
[88] Zhang L S, Liang X Q, Song W G, Wu Z Y. Phys. Chem. Chem. Phys., 2010, 12: 12055-12059
[89] Wang Y, Shao Y, Matson D W, Li J, Lin Y. ACS Nano, 2010, 4(4): 1790-1798
[90] Chen Z, Higgins D, Tao H, Hsu R S, Chen Z. J. Phys. Chem. C, 2009, 113(49): 21008-21013
[91] Hu X B, Wu Y T, Li H R, Zhang Z. J. Phys. Chem. C, 2010, 114(21): 9603-9607
[92] Shan B, Cho K. Chem. Phys. Lett., 2010, 492(1/3): 131-136
[93] Geng D S, Chen Y, Chen Y G, Li Y L, Li R Y, Sun X L, Ye S Y, Knights S. Energy Environ. Sci., 2011, 4: 760-764
[94] Liu Q, Zhang H Y, Zhang H W, Chen S. Electrochim. Acta, 2012, 81: 313-320
[95] Max W M, Patadia S N, Kammen D M. Energy Policy, 2010, 38(2): 919-931
[96] Wang Y, Shi Z Q, Huang Y, Ma Y F, Wang C Y, Chen M M, Chen Y S. J. Phys. Chem. C, 2009, 113(30): 13103-13107
[97] Wang G, Zhang J, Zhang L. Chem. Soc. Rev., 2012, 41: 797-828
[98] Wen F, Yang S Y, Chen X P. Applied Mechanics and Materials, Switzenland: Trans. Tech. Publications, 2012, 130: 3225-3228
[99] Kim T Y, Lee H W, Stoller M, Dreyer D R, Bielawski C W, Ruoff R S, Suh K. ACS Nano, 2011, 5: 436-442
[100] Dreyer D R, Stoller M D, Zhu Y, Muralli S, Vall V P, Morales C, Fuertes A, Bielawski C, Ruoff R S. Phys. Chem. Chem. Phys., 2011, 13: 2652-2655
[101] Zhang L L, Zhou R, Zhao X S. J. Mater. Chem., 2010, 20: 5983-5992
[102] Zhou Q, Zhao Z, Chen Y, Hu H, Qiu J. J. Mater. Chem., 2012, 22: 6061-6066
[103] Wang Y, Wu Y, Huang Y, Zhang F, Yang X, Ma Y, Chen Y. J. Phys. Chem. C, 2011, 115: 23192-23197
[104] Liu C, Yu Z, Neff D, Zhamu A, Jang B Z. Nano Lett., 2010, 10: 4863-4868
[105] Jeong H M, Lee J W, Shin W H, Choi Y J, Shin H J, Kang J K, Choi J W. Nano Lett., 2011, 11(6): 2472-2477
[106] Wu G, Swaidan R, Li D, Li N. Electrochim. Acta, 2008, 53: 7622-7629
[107] Dai P, Gao C. IEEE Trans. Magn., 1998, 34(4): 1738-1740
[108] Zheng B, Zheng W T, Zhang K, Wen Q B, Zhu J Q. Carbon, 2006, 44(5): 962-968
[109] Terrones M, Ajayan P M, Banhart F, Blase X, Carroll D L, Charlier J C, Czerw R, Foley B, Grobert N, Kamalakaran R. Kohler R P, Ruhle M, Seeger T, Terrones H. Appl. Phys. A, 2002, 74(3): 355-361
[110] Cameron D C. Surf. Coat. Technol., 2003, 169/170: 245-250
[111] Kundu S, Nagaiah T C, Xia W, Wang Y, Dommele S V, Bitter J H, Santa M, Schuhmann G, Muhler M. J. Phys. Chem. C, 2009, 113(32): 14302-14310
[112] Biddinger E J, Deak D V, Ozkan U S. Top. Catal., 2009, 52(11): 1566-1574
[113] Nagaiah T C, Kundu S, Bron M, Muhler M, Schuhmann W. Electrochem. Commun., 2010, 12(3): 338-341
[114] Niwa H, Horiba K, Harada Y, Oshima M, Ikeda T, Terakura K, Ozaki J, Miyata S. J. Power Sources, 2009, 187(1): 93-97
[115] Lee K H, Sinnott S B. Nano Lett., 2005, 5(4): 793-798
[116] Mowbray D, Morgan C, Thygesen K. Phys. Rev. B, 2009, 79(19): art. no. 195431
[117] Sorescu D C, Jordan K D, Avouris P. J. Phys. Chem., 2001, 105(45): 11227-11232
[118] Ulbricht H, Moos G, Hertel T. Phys. Rev. B, 2002, 66(7): art . no. 075404
[119] Shan B, Cho K. Chem. Phys. Lett., 2010, 492(1/3): 131-136
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[4] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[5] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[6] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[7] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[8] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[9] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[10] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[11] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[12] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[13] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[14] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[15] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
Viewed
Full text


Abstract

Nitrogen-Doped Graphene