中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC121223 Previous Articles   Next Articles

Ambient Temperature Rechargeable Aluminum Batteries and Their Key Materials

Wang Huali, Bai Ying*, Chen Shi, Wu Feng, Wu Chuan*   

  1. Beijing Key Laboratory of Environmental Science and Engineering, School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081, China
  • Received: Revised: Online: Published:
PDF ( 1312 ) Cited
Export

EndNote

Ris

BibTeX

Aluminum is a high energy carrier and an ideal electrode material for batteries. At present, the application of aluminum in rechargeable batteries are mainly high temperature molten salt batteries, all these rechargeable aluminum batteries use molten salt electrolyte, which must work at high temperature. The use of high temperature molten salt electrolyte limited the development of rechargeable aluminum batteries. Recently, researchers begin to use ambient temperature ionic liquids as electrolyte of rechargeable aluminum batteries, which can prevent the formation of oxide films on the aluminum surface as well as eliminate H2 evolution. This new battery system working at mild condition, which adopts aluminum or aluminum intercalation compounds as electrodes and ionic liquids as electrolytes, has many advantages compared to conventional rechargeable batteries. This paper introduces related researches and applications of ambient temperature rechargeable aluminum batteries in recent years, including the optimizing of aluminum anode and inhibition of dendrite, the design of aluminum anode materials that can intercalate and release aluminum ion, the performance of polymer cathode materials and transition metal oxide cathode materials, the request of electrolytes, and advantages of ionic liquid used as electrolyte. Furthermore, possible existent problems and corresponding solutions are proposed. Contents
1 Introduction
2 Optimize and design of anode material in ambient temperature rechargeable aluminum batteries
2.1 Activation and anti-corroding of the aluminum anode
2.2 Dendrite formation and inhibition
2.3 Aluminum anode materials that can intercalate and deintercalate aluminum ion
3 Electrolyte for ambient temperature rechargeable aluminum batteries
3.1 The request of electrolytes
3.2 The advantages of ionic liquids used as electrolyte
3.3 The application of ionic liquids
4 Cathode materials used in ambient temperature rechargeable aluminum batteries
4.1 Polymer cathode materials
4.2 Transition metal oxide cathode materials
5 Conclusion

CLC Number: 

[1] 李庆峰(Li Q F), 邱竹贤(Qiu Z X). 东北大学学报: 自然科学版(Journal of Northeastern University (Natural Science Edition)), 2001, 22(2): 130-132
[2] 王兆文(Wang Z W), 李延祥(Li Y X), 李庆峰(Li Q F), 高炳亮(Gao B L), 邱竹贤(Qiu Z X). 有色金属(Non-Ferrous Metal), 2002, 54 (1): 19-23
[3] Hulot M. Compt. Rend., 1855, 40: 148-152
[4] Sargent D E. US 2554447, 1951
[5] Zaromb S. J. Electrochem. Soc., 1962, 109: 1125-1137
[6] Trevethan L, Bockstie D, Zaromb S. J. Electrochem. Soc., 1963, 110: 267-271
[7] Miller S E. 国外舰船技术(船电类)(Foreign Ship Technology (Marine Electric Class)), 1980, 4: 39-40
[8] Giner J, Holleck G. Aluminum-Chlorine Battery. Final Report by Tyco Laboratories Inc., On contract No. NAS 12-688, March 1970 (NASA-CR-1541)
[9] Knutz B C, Hjuler H A, Berg R W. J. Electrochem. Soc., 1993, 140(12): 3380-3390
[10] Takami N, Koura N. J. Electrochem. Soc., 1989, 136: 730-740
[11] Gifford P R, Palmisano J B. J. Electrochem. Soc., 1988, 135: 650-654
[12] Gifford P R, Palmisano J B. J. Electrochem. Soc., 1987, 134: 610-614
[13] 李庆峰(Li Q F), 邱竹贤(Qiu Z X). 有色矿冶(Non-Ferrous Mining and Metallurgy), 1994, 2: 25-31
[14] 陈建华(Chen J H). 表面技术(Surface Technology), 1994, 23(4): 159-165
[15] Hasvold O, Johnsen K H, Mollestad O. J. Power Sources, 1999, 80: 254-260
[16] Anderson G E, Middletown R I. US 3953239, 1976
[17] Hunter J A, Scamans G M, O'Callaghan W B. US 4942100, 1990
[18] Hunter J A, Hamlen R P. US 5376471, 1994
[19] 蔡年生(Cai N S). 舰船科学技术(Ship Science and Technology), 2003, 25(1): 58-62
[20] 奚碚华(Xi P H), 夏天(Xia T). 鱼雷技术(Torpedo Technology), 2005, 13(2): 7-13
[21] 李学海(Li X H), 王为(Wang W), 吕霖娜(Lv L N), 伊宇(Yi Y). 电源技术(Chinese Journal of Power Sources), 2006, 30(9): 760-763
[22] Stokes J J. US 2838591, 1958
[23] 杨林(Yang L). 四川日化(Sichuan Chemical), 1991, 2: 62-67
[24] Takami N. US 20030219650, 2003
[25] Hidesato S, Takami N. US 20030219650A1, 2003
[26] Hasvold Q, Størkersen N. J. Power Sources, 2001, 96: 252-258
[27] Zaromb S. US 3554810, 1967
[28] Marsh C L, Seebach G L, VanZee J W, Bessette R R, Meunier H G, Medeiros M G. US 5296429, 1994
[29] 温兆银(Wen Z Y). 上海节能(Shanghai Energy Conservation), 2007, 2: 7-11
[30] Licht S L. US 5431881, 1995
[31] Licht S L. US 4828492, 1989
[32] Licht S L, Peramunage D. US 5648183, 1997
[33] Peramunage D, Dillon R, Licht S L. J. Power Sources, 1993, 3(45): 311-323
[34] Licht S L. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 134: 241-248
[35] Licht S L, Marsh C L. US 5472807, 1995
[36] Licht S L. US 6387569 B1, 2002
[37] Hjuler H A, Berg R W, Bierrum N J. Secondary Aluminium-Metal Sulfide Batteries with Molten NaAlCl4 Electrolyte, Proceedings of the 14th International Power Sources Symposium, 1985. 1-21
[38] Brown G M, US 12/895487, 2010
[39] Jayaprakash N, Das S K, Archer L A. Chem. Commun., 2011, 47: 12610-12612
[40] Li Q F, Bjerrum N J. J. Power Sources, 2002, l10: 1-10
[41] Albert I J, Kulandainathan M A, Ganesan M. J. Appl. Electrochem., 1989, 19: 547-559
[42] Despic A, Radosevic J, Dabic P. Electrochem. Acta, 1990, 35: 1743-1746
[43] Tuck C D S, Hunter J A, Scomans G M. J. Electrochem. Soc., 1987, 134: 2970-2981
[44] Kliskic M, Radosevic J, Aljinovic L J. J. Appl. Electrochem., 1994, 5: 814-818
[45] Gorbunova K M, Adzhemyan T A. Compt. Rend. Acad. Sci. USSR, 1934, 1: 564-567
[46] Diggle J W, Despic A R, Bockris J O M. J. Electrochem. Soc., 1969, 116: 1503-1514
[47] Li Q F, Bjerrum N J. J. Power Sources, 2002, 110: 1-10
[48] Grjotheim K, Matiasovsky K. Acta Chem. Scand., 1980, 34: 666-670
[49] Fellner P, Chrenkova-Paucirova M, Matiasovsky K. Surface Tech., 1981, 14: 101-108
[50] Austin L W, Vucich M G, Smith E J. Electrochem. Tech., 1963, 14: 267-272
[51] Hayashi T. Proceedings of the 1st International Symposium on Molten Salt Chem. Techn., Kyoto, 1983. 53
[52] Stafford G R. J. Electrochem. Soc., 1989, 136: 635-639
[53] Carpio R A, King L A. J. Electrochem. Soc., 1981, 128: 1510-1517
[54] Li Q F, Hjuler H A, Berg R W, Bjerrum N J. J. Electrochem. Soc., 1990, 137: 2794-2798
[55] Tran T T, Obrovac M N. J. Electrochem. Soc., 2011, 158 (12): A1411-A1416
[56] 赵宇光(Zhao Y G). CN101764253A, 2010
[57] Shao H B, Wang J M, Zhang Z. Materials Chemistry and Physics, 2002, 77: 305-309
[58] 陈祝平(Chen Z P). 特种电镀技术(Special Plating Technology). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2004. 78-102
[59] 郭粤湘(Guo Y X). 新技术新工艺(New Technology & New Process), 1990, 1: 40-41
[60] Vestergaard B, Bjerrum N J, Petrushina I, Hiuler H A, Berg R W, Begtrup M. J. Electrochem. Soc., 1993, 140: 3108-3113
[61] 岳竞慧(Yue J H), 高利珍(Gao L Z), 岳秀萍(Yue X P), 赵宇光(Zhao Y G). 能源与节能(Energy and Energy Conservation), 2011, 2: 68-70
[62] 陈昕(Chen X), 司士辉(Si S H), 张漪丽(Zhang Y L). 应用化学(Chinese Journal of Applied Chemistry), 2004, 21(6): 613-616
[63] Kazuhiro N, Eishi E, Kenichi T. US 5554458, 1996
[64] Atsushi O. US 7524587, 2010
[65] Giner J, Holleck G L. J. Electrochem. Soc., 1972, 119: 1158-1165
[66] Weaving J S, Orchard S W. J. Power Sources, 1991, 36: 537-546
[67] Greenberg J. US P3635765, 1972
[68] Buzzeli D. US P3650834, 1972
[69] Reddy L, Porubszky I, Molnar I. J. Power Sources, 1974, 5: 559-564
[70] Knutz B C, Hjuler H A, Berg R W, Bjerrum N J. J. Electrochem. Soc., 1993, 140: 3374-3379
[71] Knutz B C, Hjuler H A, Berg R W, Bjerrum N J. J. Electrochem. Soc., 1993, 140: 3380-3390
[72] Berretoni M, Tossici R, Zamponi S, Marassi R, Mamantov G. J. Electrochem. Soc., 1993, 140: 969-974
[73] Koura N. J. Electrochem. Soc., 1980, 127: 1529-1531
[74] Koura N, Inoue T. Denki Kagaku, 1981, 49: 113-118
[75] Takhashi S, Koura N. J. Electroanal. Chem., 1985, 188: 245-255
[76] Takami N, Koura N. Electrochim. Acta, 1988, 33: 69-74
[77] Takami N, Koura N. J. Electrochem. Soc., 1993, 140: 928-932
[78] Li Q F, Hjuler H A, Berg R W, Bjerrum N J. J. Electrochem. Soc., 1990, 137(2): 593-598
[79] Li Q F, Hjuler H A, Berg R W, Bjerrum N J. J. Electrochem. Soc., 1991, 138(3): 763-766
[80] 赵宇光(Zhao Y G), 黄兆丰(Huang Z F). CN 101764258A, 2010
[1] . Research Progress on the Pt-based Electrocatalysts with Special Three-dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 0, (): 0-0.
[2] Wenchen Ren, Zhihua Cui, Wentao Wang, Bingtao Tang. Application of Biomass Fiber Derived Carbon in Cathode for Lithium Sulfur Batteries [J]. Progress in Chemistry, 0, (): 6-0.
[3] Zenghua Chang, Jiantao Wang, Zhaohui Wu, Jinling Zhao, Shigang Lu. Concentrated Electrolyte for Lithium/Li-Ion Batteries [J]. Progress in Chemistry, 2018, 30(12): 1960-1974.
[4] Kai Yang, Shengnan Zhang, Dongmei Han, Min Xiao, Shuanjin Wang*, Yuezhong Meng*. Multifunctional Lithium-Sulfur Battery Separator [J]. Progress in Chemistry, 2018, 30(12): 1942-1959.
[5] Xi Liang, Cheng Wang, Yijie Lei, Yadi Liu, Bo Zhao, Feng Liu. Potential Applications of Metal Organic Framework-Based Materials for Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2018, 30(11): 1770-1783.
[6] Changyuan Bao, Jiajun Han*, Jinning Cheng, Ruitao Zhang. Electrode Materials Blended with Graphene/Polyaniline for Supercapacitor [J]. Progress in Chemistry, 2018, 30(9): 1349-1363.
[7] Xianwei Lv, Zhongpan Hu, Hui Zhao, Yuping Liu, Zhongyong Yuan. Self-Supporting Transition Metal Phosphides as Electrocatalysts for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2018, 30(7): 947-957.
[8] Kai Han, Nuo Li, Hongqi Ye, Kai Han*. Synthesis of Two-Dimensional MXene and Their Applications in Electrochemical Energy Storage [J]. Progress in Chemistry, 2018, 30(7): 932-946.
[9] Yijia Shao, Bin Huang, Quanbing Liu, Shijun Liao. Preparation and Modification of Ni-Co-Mn Ternary Cathode Materials [J]. Progress in Chemistry, 2018, 30(4): 410-419.
[10] Shuaijin Wu, Juanyu Yang, Bing Yu, Sheng Fang, Zhaohui Wu, Bimeng Shi. Nano/Micro Structured Silicon-Based Negative Materials [J]. Progress in Chemistry, 2018, 30(2/3): 272-285.
[11] Bin Chi, Sanying Hou, Guangzhi Liu, Shijun Liao*. High Performance and High Power Density Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2018, 30(2/3): 243-251.
[12] Xinbing Cheng, Qiang Zhang*. Growth Mechanisms and Suppression Strategies of Lithium Metal Dendrites [J]. Progress in Chemistry, 2018, 30(1): 51-72.
[13] Min Li, Yanli Wang, Xiaoyan Wu, Lei Duan, Chunming Zhang, Dannong He. The Mechanism of Ion-Doping, Surface Coating, Surface Oxygen Vacancy Modification and Their Joint Mechanism in Lithium-Rich Material for Li-Ion Battery [J]. Progress in Chemistry, 2017, 29(12): 1526-1536.
[14] Xiujuan Li, Yunhe Cao, Kang Hua, Chang Wang, Weilin Xu, Dong Fang. Characterization and Modification Method of Oxovanadium-Based Electrode Materials [J]. Progress in Chemistry, 2017, 29(10): 1260-1272.
[15] Xu Zhao, Keqing Wang, Bo Li, Changqing Li, Yuqing Lin*. Preparation, Surface Modification and in vivo/Single Cell Electroanalytical Application of Microelectrode [J]. Progress in Chemistry, 2017, 29(10): 1173-1183.