中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC121213 Previous Articles   Next Articles

Recent Progress of Copper and Nickel Chaperones

Yang Xinming1, Xu Dechen2, Cheng Tianfan1, Xi Zhaoyong2, Zhao Linhong2, Liu Yangzhong*2, Sun Hongzhe*1   

  1. 1. Department of Chemistry, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, China;
    2. Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
  • Received: Revised: Online: Published:
PDF ( 781 ) Cited
Export

EndNote

Ris

BibTeX

Maturation of copper- and nickel-containing enzymes relies on a battery of metallochaperones, which play an important role in the transport and trafficking of Cu or Ni, and assist the assembly of metallocenter in metalloenzymes. Significant progress on the structure and function of metallochaperones has been made in the past years, improving our understanding on the homeostasis of Cu/Ni in cells. Recent progress of Cu/Ni chaperones is summarized in this review. The blueprint of Cu import and homeostasis is briefly discussed followed by the structural and functional aspects of selected Cu chaperones, i.e. Atox1, Cox17 and CCS. Moreover, the putative relationships between Cu chaperones and drugs are discussed. The second part focuses on the maturation of hydrogenase and urease, in which a series of Ni chaperones interacts with each other to achieve the homeostasis of nickel. Selected structural complexes and in vivo functional study of the chaperones are emphasized, the “cross-talk” between the two maturation pathways is presented.

Contents
1 Introduction
2 Copper chaperones
2.1 Cu import and homeostasis
2.2 Atox1
2.3 Cox17
2.4 CCS
2.5 Copper chaperones in relation to drugs
3 Nickel chaperones
3.1 Ni importer, regulator and storage
3.2 Ni chaperones for the maturation of urease
3.3 Ni chaperones for the maturation of hydrogenase
3.4 Cross-talk between the maturation of urease and hydrogenase
4 Conclusion

CLC Number: 

[1] Banci, L, Bertini I, Ciofi-Baffoni S, Janicka A, Martinelli M, Kozlowski H, Palumaa P. J. Biol. Chem., 2008, 283: 7912-7920
[2] Banci L, Bertini I, McGreevy K S, Rosato A. Nat. Prod. Rep., 2010, 27: 695-710
[3] Linder M C, Wooten L, Cerveza P, Cotton S, Shulze R, Lomeli N. Am. J. Clin. Nutr., 1998, 67: 965S-971S
[4] Tanzi R E, Petrukhin K, Chernov I, Pellequer J L, Wasco W, Ross B, Romano D M, Parano E, Pavone L, Brzustowicz L M, Devoto M, Peppercorn J, Bush A I, Sternlieb I, Pirastu M, Gusella J F, Evgrafov O, Penchaszadeh G K, Honig B, Edelman I S, Soares M B, Scheinberg I H, Gilliam T C. Nat. Genet., 1993, 5: 344-350
[5] Petrukhin K, Fischer S G, Pirastu M, Tanzi R E, Chernov I, Devoto M, Brzustowicz L M, Cayanis E, Vitale E, Russo J J, Matseoane D, Boukhgalter B, Wasco W, Figus A L, Loudianos J, Cao A, Sternlieb I, Evgrafov O, Parano E, Pavone L, Warburton D, Ott J, Penchaszadeh G K, Scheinberg I H, Gilliam T C. Nat. Genet., 1993, 5: 338-343
[6] Rosen D R. Nature, 1993, 364: 362-362
[7] Atwood C S, Moir R D, Huang X D, Scarpa R C, Bacarra N M E, Romano D M, Hartshorn M K, Tanzi R E, Bush A I. J. Biol. Chem., 1998, 273: 12817-12826
[8] Selkoe D J. Trends Cell Biol., 1998, 8: 447-453
[9] Nielsen F H. Biol. Trace Elem. Res., 1990, 26/27: 599-611
[10] Brown P H, Welch R M, Cary E E. Plant Physiol., 1987, 85: 801-803
[11] Eskew D L, Welch R M, Cary E E. Science, 1983, 222: 621-623
[12] Covacci A, Telford J L, Del Giudice G, Parsonnet J, Rappuoli R. Science, 1999, 284: 1328-1333
[13] Van Vliet A H M, Kuipers E J, Waidner B, Davies B J, de Vries N, Penn C W, Vandenbroucke-Grauls C, Kist M, Bereswill S, Kusters J G. Infect. Immun., 2001, 69: 4891-4897
[14] Waldron K J, Robinson N J. Nat. Rev. Microbiol., 2009, 7: 25-35
[15] Finney L A, O'Halloran T V. Science, 2003, 300: 931-936
[16] Kim B E, Nevitt T, Thiele D J. Nat. Chem. Biol., 2008, 4: 176-185
[17] Maryon E B, Molloy S A, Zimnicka A M, Kaplan J H. BioMetals, 2007, 20: 355-364
[18] De Feo C J, Aller S G, Unger V M. BioMetals, 2007, 20: 705-716
[19] De Feo C J, Aller S G, Siluvai G S, Blackburn N J, Unger V M. Proc. Natl. Acad. Sci. U.S.A., 2009, 106: 4237-4242
[20] Tsigelny I F, Sharikov Y, Greenberg J P, Miller M A, Kouznetsova V L, Larson C A, Howell S B. Cell Biochem. Biophys., 2012, 63: 223-234
[21] Yang L, Huang Z W, Li F. J. Pept. Sci., 2012, 18: 449-455
[22] Haas K L, Putterman A B, White D R, Thiele D J, Franz K J. J. Am. Chem. Soc., 2011, 133: 4427-4437
[23] Robinson N J, Winge D R. Annu. Rev. Biochem., 2010, 79: 537-562
[24] Itoh S, Ozumi K, Kim H W, Nakagawa O, McKinney R D, Folz R J, Zelko I N, Ushio-Fukai M, Fukai T. Free Radic. Biol. Med., 2009, 46: 95-104
[25] Lin S J, Pufahl R A, Dancis A, OHalloran T V, Culotta V C. J. Biol. Chem., 1997, 272: 9215-9220
[26] Pufahl R A, Singer C P, Peariso K L, Lin S J, Schmidt P J, Fahrni C J, Culotta V C, PennerHahn J E, OHalloran T V. Science, 1997, 278: 853-856
[27] Boal A K, Rosenzweig A C. Chem. Rev., 2009, 109: 4760-4779
[28] Rodriguez-Granillo A, Wittung-Stafshede P. Biochemistry, 2009, 48: 960-972
[29] Hussain F, Olson J S, Wittung-Stafshede P. Proc. Natl. Acad. Sci. U.S.A., 2008, 105: 11158-11163
[30] Hussain F, Rodriguez-Granillo A, Wittung-Stafshede P. J. Am. Chem. Soc., 2009, 131: 16371-16373
[31] Badarau A, Dennison C. J. Am. Chem. Soc., 2011, 133: 2983-2988
[32] Itoh S, Kim H W, Nakagawa O, Ozumi K, Lessner S M, Aoki H, Akram K, McKinney R D, Ushio-Fukai M, Fukai T. J. Biol. Chem., 2008, 283: 9157-9167
[33] Muller P A J, Klomp L W J. Int. J. Biochem. Cell Biol., 2009, 41: 1233-1236
[34] Lutsenko S, Barnes N L, Bartee M Y, Dmitriev O Y. Physiol. Rev., 2007, 87: 1011-1046
[35] Yatsunyk L A, Rosenzweig A C. J. Biol. Chem., 2007, 282: 8622-8631
[36] Banci L, Bertini I, Ciofi-Baffoni S, Kozyreva T, Zovo K, Palumaa P. Nature, 2010, 465: 645-648
[37] Achila D, Banci L, Bertini I, Bunce J, Ciofi-Baffoni S, Huffman D L. Proc. Natl. Acad. Sci. U.S.A., 2006, 103: 5729-5734
[38] Rodriguez-Granillo A, Crespo A, Wittung-Stafshede P. Biochemistry, 2009, 48: 5849-5863
[39] Rodriguez-Granillo A, Crespo A, Wittung-Stafshede P. J. Phys. Chem. B, 2010, 114: 1836-1848
[40] Banci L, Bertini I, Cantini F, Della-Malva N, Migliardi M, Rosato A. J. Biol. Chem., 2007, 282: 23140-23146
[41] Banci L, Bertini I, Cantini F, Massagni C, Migliardi M, Rosato A. J. Biol. Chem., 2009, 284: 9354-9360
[42] Keller A M, Benitez J J, Klarin D, Zhong L H, Goldfogel M, Yang F, Chen T Y, Chen P. J. Am. Chem. Soc., 2012, 134: 8934-8943
[43] Peter C, Laliberte J, Beaudoin J, Labbe S. Eukaryot. Cell, 2008, 7: 1781-1794
[44] Du T, Caragounis A, Parker S J, Meyerowitz J, La Fontaine S, Kanninen K M, Perreau V M, Crouch P J, White A R. Free Radic. Biol. Med., 2011, 51: 2060-2072
[45] Longen S, Bien M, Bihlmaier K, Kloeppel C, Kauff F, Hammermeister M, Westermann B, Herrmann J M, Riemer J. J. Mol. Biol., 2009, 393: 356-368
[46] Kako K, Tsumori K, Ohmasa Y, Takahashi Y, Munekata E. Eur. J. Biochem., 2000, 267: 6699-6707
[47] Zhu D Y, Stumpf C R, Krahn J M, Wickens M, Hall T M T. Proc. Natl. Acad. Sci. U.S.A., 2009, 106: 20192-20197
[48] Quenault T, Lithgow T, Traven A. Trends Cell Biol., 2011, 21: 104-112
[49] Abajian C, Yatsunyk L A, Ramirez B E, Rosenzweig A C. J. Biol. Chem., 2004, 279: 53584-53592
[50] Banci L, Bertini I, Ciofi-Baffoni S, Tokatlidis K. FEBS Lett., 2009, 583: 1699-1702
[51] Cobine P A, Pierrel F, Winge D R. Biochim. Biophys. Acta, 2006, 1763: 759-772
[52] Horng Y C, Cobine P A, Maxfield A B, Carr H S, Winge D R. J. Biol. Chem., 2004, 279: 35334-35340
[53] Leary S C, Kaufman B A, Pellecchia G, Guercin G H, Mattman A, Jaksch M, Shoubridge E A. Hum. Mol. Genet., 2004, 13: 1839-1848
[54] Horn D, Barrientos A. IUBMB Life, 2008, 60: 421-429
[55] Arnesano F, Balatri E, Banci L, Bertini I, Winge D R. Structure, 2005, 13: 713-722
[56] Palumaa P, Kangur L, Voronova A, Sillard R. Biochem. J., 2004, 382: 307-314
[57] Voronova A, Meyer-Klaucke W, Meyer T, Rompel A, Krebs B, Kazantseva J, Sillard R, Palumaa P. Biochem. J., 2007, 408: 139-148
[58] Oswald C, Krause-Buchholz U, Rodel G. J. Mol. Biol., 2009, 389: 470-479
[59] Remacle C, Coosemans N, Jans F, Hanikenne M, Motte P, Cardol P. Plant Mol. Biol., 2010, 74: 223-233
[60] Sideris D P, Petrakis N, Katrakili N, Mikropoulou D, Gallo A, Ciofi-Baffoni S, Banci L, Bertini I, Tokatlidis K. J. Cell Biol., 2009, 187: 1007-1022
[61] Banci L, Bertini I, Cefaro C, Ciofi-Baffoni S, Gallo A. J. Biol. Chem., 2011, 286: 34382-34390
[62] Banci L, Bertini I, Ciofi-Baffoni S, Hadjiloi T, Martinelli M, Palumaa P. Proc. Natl. Acad. Sci. U.S.A., 2008, 105: 6803-6808
[63] Culotta V C, Klomp L W J, Strain J, Casareno R L B, Krems B, Gitlin J D. J. Biol. Chem., 1997, 272: 23469-23472
[64] Sagasti S, Yruela I, Bernal M, Lujan M A, Frago S, Medina M, Picorel R. Metallomics, 2011, 3: 169-175
[65] Lamb A L, Wernimont A K, Pufahl R A, Culotta V C, O'Halloran T V, Rosenzweig A C. Nat. Struct. Biol., 1999, 6: 724-729
[66] Barry A N, Blackburn N J. Biochemistry, 2008, 47: 4916-4928
[67] Wright G S A, Hasnain S S, Grossmann J G. Biochem. J., 2011, 439: 39-44
[68] Kirby K, Jensen L T, Binnington J, Hilliker A J, Ulloa J, Culotta V C, Phillips J P. J. Biol. Chem., 2008, 283: 35393-35401
[69] Chu C C, Lee W C, Guo W Y, Pan S M, Chen L J, Li H M, Jinn T L. Plant Physiol., 2005, 139: 425-436
[70] Carroll M C, Outten C E, Proescher J B, Rosenfeld L, Watson W H, Whitson L J, Hart P J, Jensen L T, Culotta V C. J. Biol. Chem., 2006, 281: 28648-28656
[71] Kawamata H, Manfredi G. Antioxid. Redox Signaling, 2010, 13: 1375-1384
[72] Kawamata H, Manfredi G. Hum. Mol. Genet., 2008, 17: 3303-3317
[73] Jensen L T, Culotta V C. J. Biol. Chem., 2005, 280: 41373-41379
[74] Son M, Fu Q, Puttaparthi K, Matthews C M, Elliott J L. Neurobiol. Dis., 2009, 34: 155-162
[75] Arciello M, Capo C R, D'Annibale S, Cozzolino M, Ferri A, Carri M T, Rossi L. BioMetals, 2011, 24: 269-278
[76] Islinger M, Li K W, Seitz J, Voelkl A, Lueers G H. Traffic, 2009, 10: 1711-1721
[77] Bertinato J, Sherrard L, Plouffe L J. Int. J. Mol. Sci., 2010, 11: 2624-2635
[78] Araya M, Andrews M, Pizarro F, Arredondo M. BioMetals, 2012, 25: 383-391
[79] Lassi K C, Prohaska J R. J. Nutr., 2012, 142: 292-297
[80] Bertinato J, Swist E, Plouffe L J, Brooks S P J, L'Abbe M R. Biochem. J., 2008, 409: 731-740
[81] Allen S, Badarau A, Dennison C. Biochemistry, 2012, 51: 1439-1448
[82] Lamb A L, Torres A S, O'Halloran T V, Rosenzweig A C. Nat. Struct. Biol., 2001, 8: 751-755
[83] Banci L, Bertini I, Cantini F, Kozyreva T, Massagni C, Palumaa P, Rubino J T, Zovo K. Proc. Natl. Acad. Sci. U.S.A., 2012, 109: 13555-13560
[84] Reddehase S, Grumbt B, Neupert W, Hell K. J. Mol. Biol., 2009, 385: 331-338
[85] Gross D P, Burgard C A, Reddehase S, Leitch J M, Culotta V C, Hell K. Mol. Biol. Cell, 2011, 22: 3758-3767
[86] Field L S, Furukawa Y, O'Halloran T V, Culotta V C. J. Biol. Chem., 2003, 278: 28052-28059
[87] Kloeppel C, Suzuki Y, Kojer K, Petrungaro C, Longen S, Fiedler S, Keller S, Riemer J. Mol. Biol. Cell, 2011, 22: 3749-3757
[88] Mufti A R, Burstein E, Csomos R A, Graf P C F, Wilkinson J C, Dick R D, Challa M, Son J K, Bratton S B, Su G L, Brewer G J, Jakob U, Duckett C S. Mol. Cell, 2006, 21: 775-785

[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Chi Guo, Wang Zhang, Ji Tu, Shengrui Chen, Jiyuan Liang, Xiangke Guo. Construction of 3D Copper-Based Collector and Its Application in Lithium Metal Batteries [J]. Progress in Chemistry, 2022, 34(2): 370-383.
[3] Tingting Zhang, Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu. Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes [J]. Progress in Chemistry, 2022, 34(2): 411-433.
[4] Shaofei Zhao, Peng Liu, Gao Cheng, Lin Yu, Huaqiang Zeng. Preparation and Pseudocapacitor Properties of Self-Supported Nickel Sulfides Electrode Materials [J]. Progress in Chemistry, 2020, 32(10): 1582-1591.
[5] Shaoming Qiao, Naibao Huang, Zhengyuan Gao, Shixian Zhou, Yin Sun. Nickel-Manganese Binary Metal Oxide as Electrode Materials for Supercapacitors [J]. Progress in Chemistry, 2019, 31(8): 1177-1186.
[6] Lixin Dai*. Ullmann Reaction,A Centennial Memory and Recent Renaissance——Related Formation of Carbon-Heteroatom Bond [J]. Progress in Chemistry, 2018, 30(9): 1257-1297.
[7] Yuanyuan Qi, Mingguang Li, Honglei Wang, Wen Zhang, Runfeng Chen*, Wei Huang*. Applications of Novel Hole-Transporting Material Copper(Ⅰ) Thiocyanate (CuSCN) in Optoelectronic Devices [J]. Progress in Chemistry, 2018, 30(6): 785-796.
[8] Mengyan Liu, Yuanshuang Wang, Wen Deng, Zhenhai Wen. Electrocatalytic Reduction of CO2 on Copper-Based Catalysts [J]. Progress in Chemistry, 2018, 30(4): 398-409.
[9] Qifeng Ding, Yaqiong Yang, Wenjun Miao, He Huang, Yang Yu*, Fei Huang*. Synthesis of Heterocycles Based on Ketene N,S-Acetals [J]. Progress in Chemistry, 2018, 30(11): 1615-1623.
[10] Hui Huang, Jun Chen, Huiru Lu, Mengxue Zhou, Yi Hu, Zhifang Chai. Neurotoxicity of Key Metals in Parkinson's Disease [J]. Progress in Chemistry, 2018, 30(10): 1592-1600.
[11] Fan Guanming, Han Qian, Xiong Xingquan. Synthesis of Hydrogels via Copper-Free Click Reactions [J]. Progress in Chemistry, 2014, 26(07): 1223-1232.
[12] Li Jing, Xie Xiaoli, Wang Jiajia, Wang Xiaomin, Li Jing, Wang Peng. Small Molecular Pharmacological Chaperone for Gaucher Disease [J]. Progress in Chemistry, 2014, 26(05): 889-897.
[13] Chen Yanping, Cheng Dangguo, Chen Fengqiu, Zhan Xiaoli. Selective Catalytic Reduction of NOx by Hydrocarbons over Copper-Free Metal Supported Zeolite [J]. Progress in Chemistry, 2013, 25(12): 2011-2019.
[14] Zhang Jinchao*, Hu Yi*, Yu Siwang, Gao Yuxi, Zhang Haisong. The Study of Biological Inorganic Chemistry Problemsin Translational Medicine [J]. Progress in Chemistry, 2013, 25(04): 469-478.
[15] Chen Ping, Jiang Liang, Liu Qiong*, Yang Silin, Song Yun, Ni Jiazuan. Selenoprotein M and Its Effects on Diseases [J]. Progress in Chemistry, 2013, 25(04): 479-487.