中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC121211 Previous Articles   Next Articles

• Review •

Dinitrogen Fixation Activated by Binuclear Transition-Metal Complexes

Ma Xuelu, Lei Ming*   

  1. State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
  • Received: Revised: Online: Published:
PDF ( 1345 ) Cited
Export

EndNote

Ris

BibTeX

Dinitrogen fixation activated by organometallic complexes under mild conditions is one of hot fields in modern industry, which try to convert abound but quite inert dinitrogen into ammonia or other nitrogenous compounds. In this review, coordination modes of N2 molecule with transition-metal complexes are classified, and the main factors such as steric effect and electronic effect on the dinitrogen activation and functionalization promoted by dinuclear transition-metal complexes are surveyed. This review attempts to summarize recent experimental and theoretical studies concerning the reactivity patterns of dinitrogen with binuclear transition-metal complexes in the dinitrogen cleavage and functionalization as well as the CO/CO2 induced N2 activation. The prospects of dinitrogen fixation activated by transition-metal complexes is presented, which is hoped to assist chemists in guiding research in the future. Contents
1 Introduction
2 Bonding modes of dinitrogen with transition-metal complexes
3 Factors influencing dinitrogen activation
4 Reactivity of dinitrogen complexes
4.1 Dinitrogen cleavage
4.2 Dinitrogen functionalization
4.3 CO/CO2 induced dintrogen activation
5 Outlook

CLC Number: 

[1] Hinrichsen S, Broda H, Gradert C, Soncksen L, Tuczek F. Annu. Rep. Prog. Chem. Sect. A: Inorg. Chem., 2012, 108: 17-47
[2] Allen A D, Senoff C V. Chem. Commun., 1965, (24): 621-622
[3] MacKay B A, Fryzuk M D. Chem. Rev., 2004, 104 (2): 385-401
[4] Fryzuk M D, Johnson S A. Coord. Chem. Rev., 2000, 379-409
[5] Martinez S, Morokuma K, Musaev D G. Organometallics, 2007, 26 (24): 5978-5986
[6] Goldberg K I, Hoffman D M, Hoffmann R. Inorg. Chem., 1982, 21 (11): 3863-3868
[7] Zhang W, Tang Y, Lei M, Morokuma K, Musaev D G. Inorg. Chem., 2011, 50 (19): 9481-9490
[8] MacLachlan E A, Fryzuk M D. Organometallics, 2006, 25 (7): 1530-1543
[9] Evans W J, Ulibarri T A, Ziller J W. J. Am. Chem. Soc., 1988, 110 (20): 6877-6879
[10] Fryzuk M D, Johnson S A, Patrick B O, Albinati A, Mason S A, Koetzle T F. J. Am. Chem. Soc., 2001, 123 (17): 3960-3973
[11] Studt F, Morello L, Lehnert N, Fryzuk M D, Tuczek F. Chem. Eur. J., 2003, 9 (2): 520-530
[12] Graham D C, Beran G J, Head G M, Christian G, Stranger R, Yates B F. J. Phys. Chem. A, 2005, 109 (30): 6762-6772
[13] Bobadova P, Wang Q, Morokuma K, Musaev D G. Angew. Chem. Int. Ed., 2005, 44 (43): 7101-7103
[14] Yates B F, Basch H, Musaev D G, Morokuma K. J. Chem. Theory. Comput., 2006, 2 (5): 1298-1316
[15] Fryzuk M D, MacKay B A, Patrick B O. J. Am. Chem. Soc., 2003, 125 (11): 3234-3235
[16] Ohki Y, Fryzuk M D. Angew. Chem. Int. Ed., 2007, 46 (18): 3180-3183
[17] Holland P L. Dalton Trans., 2010, 39 (23): 5415-5425
[18] Fryzuk M D, Haddad T S, Mylvaganam M, McConville D H, Rettig S J. J. Am. Chem. Soc., 1993, 115 (7): 2782-2792
[19] Wolf J M, Blaauw R, Meetsma A, Teuben J H, Gyepes R, Varga V, Mach K, Veldman N, Spek A L. Organometallics, 1996, 15 (23): 4977-4983
[20] Peigné B, Cano J, Aullón G. Eur. J. Inorg. Chem., 2012, (5): 797-806
[21] Chirik P J. Dalton Trans., 2007, (1): 16-25
[22] Janas Z, Sobota P. Coord. Chem. Rev., 2005, 249 (21/22): 2144-2155
[23] Smythe N C, Schrock R R, Müller P, Weare W W. Inorg. Chem., 2006, 45 (23): 9197-9205
[24] Guha A K, Phukan A K. Inorg. Chem., 2011, 50 (18): 8826-8833
[25] Terrett R, Cavigliasso G, Stranger R, Yates B F. Dalton Trans., 2011, 40 (42): 11267-11275
[26] Caselli A, Solari E, Scopelliti R, Floriani C, Re N, Rizzoli C, Chiesi-Villa A. J. Am. Chem. Soc., 2000, 122 (15): 3652-3670
[27] Fryzuk M D, Johnson S A, Rettig S J. J. Am. Chem. Soc., 1998, 120 (42): 11024-11025
[28] Hirotsu M, Fontaine P, Epshteyn A, Zavalij Y, Sita R. J. Am. Chem. Soc., 2007, 129 (30): 9284-9285
[29] Cui Q, Musaev D G, Svensson M, Sieber S, Morokuma K. J. Am. Chem. Soc., 1995, 117 (49)): 12366-12367
[30] Bates V M E, Clentsmith G K B, Cloke F G N, Green J C, Jenkin H D L. Chem. Commun., 2000, (11): 927-928
[31] Fryzuk M D, Love J B, Rettig S J, Young V G. Science, 1997, 275 (5305): 1445-1447
[32] Pool J A, Lobkovsky E, Chirik P J. Nature, 2004, 427 (6974): 527-530
[33] Basch H, Musaev D G, Morokuma K. J. Am. Chem. Soc., 1999, 121 (24): 5754-5761
[34] Miyachi H, Shigeta Y, Hirao K. J. Phys. Chem. A, 2005, 109 (39): 8800-8808
[35] Martinez S, Morokuma K, Musaev D G. Organometallics, 2007, 26: 5978-5986
[36] Pun D, Bradley C A, Lobkovsky E, Keresztes I, Chirik P J. J. Am. Chem. Soc., 2008, 130 (43): 14046-14047
[37] Morello L, Love J B, Patrick B O, Fryzuk M D. J. Am. Chem. Soc., 2004, 126 (31): 9480-9481
[38] Studt F, MacKay B A, Fryzuk M D, Tuczek F. Dalton Trans., 2006, (9): 1137-1140
[39] Fryzuk M D. Acc. Chem. Res., 2009, 42 (1): 127-133
[40] Bernskoetter W H, Olmos A V. Pool J A, Lobkovsky E, Chirik P J. J. Am. Chem. Soc., 2006, 128(33): 10696-10697
[41] Bernskoetter W H, Lohkovsky E, Chirik P J. Angew. Chem. Int. Ed., 2007, 46 (16): 2858-2861
[42] Knobloch D J, Lobkovsky E, Chirik P J. J. Am. Chem. Soc., 2008, 120 (13): 4248-4249
[43] Knobloch D J, Lobkovsky E, Chirik P J. Nat. Chem., 2010, 2 (1): 30-35
[44] Knobloch D J, Lobkovsky E, Chirik P J. J. Am. Chem. Soc., 2010, 132 (30): 10553-10564
[45] Ma X, Zhang X, Zhang W, Lei M. Phys. Chem. Chem. Phys., 2013, 15 (3): 901-910
[46] Knobloch D J, Lobkovsky E, Chirik P J. J. Am. Chem. Soc., 2010, 132 (43): 15340-15350
[47] Knobloch D J, Semproni S P, Lobkovsky E, Chirik P J. J. Am. Chem. Soc., 2012, 134 (7): 3377-3386
[48] Semproni S P, Margulieux G W, Chirik P J. Organometallics, 2012, 31 (17): 6278-6287
[49] Li Y, Wang B, Luo Y, Yang D, Tong P, Zhao J, Luo L, Zhou Y, Chen S, Cheng F, Qu J. Nat. Chem., 2013, 5: 320-326
[1] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[2] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[3] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[4] Xi Chen, Zheyao Li, Yayun Chen, Zhihua Chen, Yan Hu, Chuanxiang Liu. C—H Cyanoalkylation:the Direct C—H Cyanomethylation of Naphthalimide [J]. Progress in Chemistry, 2021, 33(11): 1947-1952.
[5] Qianwen Huang, Xiaowen Zhang, Mi Li, Xiaoyan Wu, Liyong Yuan. Preparation of Functional Fibrous Silica Nanoparticles and Their Applications in Adsorption and Separation [J]. Progress in Chemistry, 2020, 32(2/3): 230-238.
[6] Qiang Zhang, Wenjun Huang, Yanbin Wang, Xingjian Li, Yiheng Zhang. Functionalization of Polyurethane Based on Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction [J]. Progress in Chemistry, 2020, 32(2/3): 147-161.
[7] Jiangbo Liu, Lihua Wang, Xiaolei Zuo. Cell Membranes Functionalization Based on DNA [J]. Progress in Chemistry, 2019, 31(8): 1067-1074.
[8] Yuanming Tan, Hao Meng, Xia Zhang. Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes [J]. Progress in Chemistry, 2019, 31(7): 980-995.
[9] Aobo Geng, Qiang Zhong, Changtong Mei, Linjie Wang, Lijie Xu, Lu Gan. Applications of Wet-Functionalized Graphene in Rubber Composites [J]. Progress in Chemistry, 2019, 31(5): 738-751.
[10] Zhao Li, Lin Yu, Zhen Zheng, Xinling Wang*. Functionalization of High-Strength Hydrogels with Regular Network Structures [J]. Progress in Chemistry, 2017, 29(7): 706-719.
[11] Xiaopeng Zhang*, Shuxiang Dong, Xuesen Fan, Guisheng Zhang. Synthesis of o-Aminobenzamide Compounds [J]. Progress in Chemistry, 2017, 29(11): 1351-1356.
[12] Zhang Guanglu, Zhang Ting, Zhou Lipeng, Sun Qingfu. Capsid-Inspired Multi-Component Self-Assembly of Nanocontainers: Structure, Functionalization, and Applications [J]. Progress in Chemistry, 2016, 28(9): 1289-1298.
[13] Sun Yue, Zhou Xiaoxin, Lou Zimo, Liu Yu, Fu Ruiqi, Xu Xinhua*. Functionalized Iron-Based Nano-Materials for Removal of Mercury from Aqueous Solution [J]. Progress in Chemistry, 2016, 28(8): 1156-1169.
[14] Dong Yunhong, Cao Liping. Functionalization of Cucurbit uril [J]. Progress in Chemistry, 2016, 28(7): 1039-1053.
[15] Li Donghan, Qi Shicheng, Zhang Xiaoa, Liao Mingyi. Preparation, Functionalization and Properties of Low Molecular Fluoropolymers [J]. Progress in Chemistry, 2016, 28(5): 673-685.