中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC121208 Previous Articles   Next Articles

• Review •

Molecular Interaction of Nanoparticles with Proteins

Xu Zhizhen1,2, Yan Xiaomin3, Zhang Jie2,4, Wang Yuqian2, Tang Shichuan*2, Zhong Rugang*1   

  1. 1. College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, China;
    2. Beijing Key Laboratory of Occupational Safety and Health, Beijing 100054, China;
    3. School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China;
    4. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
  • Received: Revised: Online: Published:
PDF ( 2166 ) Cited
Export

EndNote

Ris

BibTeX

The rapid development of nanotechnology offers wide prospects for the application of nanomaterials in different areas of industry, technology and medicine. Meanwhile, the biological effect and safety of nanoparticles have attracted worldwide attention. To ensure the healthy and sustainable development of nanotechnology, the interaction of nanoparticles with organisms and the biological effect produced by nanoparticles can not be neglected.To understand the biological effects of nanoparticles, investigating how the nanoparticles entrance into organisms and the complicated molecular aspects of nano-bio interactions is crucial. The main routes of nanoparticles entering the organisms are introduced. The interaction of nanoparticles with protein, the influencing factors and characterization of the interaction are reviewed in detail. The effects of nano-protein interaction on the structure and function of protein and the biological impact of nanoparticles are summarized. Contents
1 Introduction
2 The main routes of nanoparticles entrance into the body
2.1 The respiratory system
2.2 The skin
2.3 The gastrointestinal system
3 The interaction of nanoparticles with proteins
4 The characterization of the interaction of nanoparticles with proteins
5 The effect of the interaction of nanoparticles with proteins
5.1 The effect on the structure and function of proteins
5.2 The effect on the characteristics and biological effect of nanoparticles
6 Outlook

CLC Number: 

[1] 赵宇亮(Zhao Y L), 柴之芳(Chai Z F). 学科发展(Disciplinary Development), 2005, 20: 194-199
[2] Zhu Q, Talton J, Zhang G, Cunningham T, Wang Z, Waters R C, Kirk J, Eppler B, Klinman D M, Sui Y, Gagnon S, Belyakov I M, Mumper R J, Berzofsky J A. Nat. Med., 2012, 18: 1291-1296
[3] Saraceno R, Chiricozzi A, Botti E, Gramiccia T, Pietroleonardo L, Chimenti S, Souto E B. Patenting Nanomedicines. Springer Berlin Heidelberg, 2012. 383-399
[4] The Project on Emerging Nanotechnologies. [2012-12-01]. http: //www. nanotechproject. org/inventories/consumer/analysis_ draft/
[5] 刘元方(Liu Y F), 陈欣欣(Chen X X), 王海芳(Wang H F). 自然杂志(Chinese Journal of Nature), 2011, 33: 192-197
[6] 晏晓敏(Yan X M), 石宝友(Shi B Y), 王东升(Wang D S), 汤鸿霄(Tang H X). 化学进展(Progress in Chemistry), 2008, 20: 422-428
[7] Oberdörster G, Oberdörster E, Oberdörster J. Environ. Health Persp., 2005, 113: 823-839
[8] 李炜(Li W), 赵峰(Zhao F), 陈春英(Chen C Y), 赵宇亮(Zhao Y L). 化学进展(Progress in Chemistry), 2009, 21: 430-435
[9] Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. Small, 2011, 7: 1322-1337
[10] Sharifi S, Behzadi S, Laurent S, Laird F M, Stroeve P, Mahmoudi M. Chem. Soc. Rev., 2012, 41: 2323-2343
[11] Song Y, Li X, Du X. Eur. Respir. J., 2009, 34: 559-567
[12] Khan M I, Mohammad A, Patil G, Naqvi S A H, Chauhan L K S, Ahmad I. Biomaterials, 2012, 33: 1477-1488
[13] Crosera M, Bovenzi M, Maina G, Adami G, Zanette C, Florio C, Filon L F. Int. Arch. Occ. Env. Hea., 2009, 82: 1043-1055
[14] Shemetov A A, Nabiev I, Sukhanova A. ACS Nano, 2012, 6: 4585-4602
[15] Ge C, Du J, Zhao L, Wang L, Liu Y, Li D, Yang Y, Zhou R, Zhao Y, Chai Z, Chen C. Proc. Nat. Acad. Sci. U. S. A., 2011, 108: 16968-16973
[16] Asuri P, Karajanagi S S, Yang H, Yim T J, Kane R S, Dordick J S. Langmuir, 2006, 22: 5833-5836
[17] Klein J. Proc. Nat. Acad. Sci. U. S. A., 2007, 104: 2029-2030
[18] Chun A L. Nat. Nanotechnol., 2012. doi: 10.1038 /nnano. 2012. 159
[19] Lynch I, Dawson K A. Nano Today, 2008, 3: 40-47
[20] Linse S, Cabaleiro-Lago C, Xue W F, Lynch I, Lindman S, Thulin E, Radford S E, Dawson K A. Proc. Nat. Acad. Sci. U. S. A., 2007, 104: 8691-8696
[21] Walkey C D, Chan W C W. Chem. Soc. Rev., 2012, 41: 2780-2799
[22] Gebauer J S, Malissek M, Simon S, Knauer S K, Maskos M, Stauber R H, Peukert W, Treuel L. Langmuir, 2012, 28: 9673-9679
[23] 庄志雄(Zhuang Z X), 刘建军(Liu J J), 袁建辉(Yuan J H). 纳米毒理学(Nanotoxicology). 北京: 科学出版社(Beijing: Science Press), 2009. 172
[24] Sund J, Alenius H, Vippola M, Savolainen K, Puustinen A. ACS Nano, 2011, 5: 4300-4309
[25] Renwick L C, Brown D, Clouter A, Donaldson K. Occup. Environ. Med., 2004, 61: 442-447
[26] Möller W, Hofer T, Ziesenis A, Karg E, Heyder J. Toxicol. Appl. Pharm., 2002, 182: 197-207
[27] Terzano C, Di Stefano F, Conti V, Graziani E, Petroianni A. Eur. Rev. Med. Pharmacol. Sci., 2010, 14: 809-820
[28] Yokoyama T, Tam J, Kuroda S, Scott A W, Aaron J, Larson T, Shanker M, Correa A M, Kondo S, Roth J A, Sokolov K, Ramesh R. PLoS One, 2011, 6: e25507
[29] 周国强(Zhou G Q), 陈春英(Chen C Y), 李玉锋(Li Y F), 李炜(Li W), 高愈希(Gao Y X), 赵宇亮(Zhao Y L). 生物化学与生物物理进展(Progress in Biochemistry and Biophysics), 2008, 35: 998-1006
[30] Ryman-Rasmussen J P, Riviere J E, Monteiro-Riviere N A. J. Invest. Dermatol., 2006, 127: 143-153
[31] Sarkar S, Sharma C, Yog R, Periakaruppan A, Jejelowo O, Thomas R. J. Nanosci. Nanotechnol., 2009, 7: 584-592
[32] Cohen D, Soroka Y, Ma'or Z, Oron M, Portugal-Cohen M, Brégégère FM, Berhanu D, Valsami-Jones E, Hai N, Milner Y. Toxicol. in Vitro, 2012, 27: 292-298
[33] Ryman-Rasmussen J P, Riviere J E, Monteiro-Riviere N A. Toxicol. Sci., 2006, 91: 159-165
[34] Rancan F, Gao Q, Graf C, Troppens S, Hadam S, Hackbarth S, Kembuan C, Blume-Peytavi U, Rühl E, Lademann J, Vogt A. ACS Nano, 2012, 6: 6829-6842
[35] Larese F F, D'Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, Maina G. Toxicology, 2009, 255: 33-37
[36] Prow T W, Monteiro-Riviere N A, Erdmann D, Riviere J E, Roberts M S, Inman A O, Grice J E, Chen X, Zhao X, Sanchez W H, Gierden A, Kendall M A F, Zvyagin A V. Nanotoxicology, 2012, 6: 173-185
[37] Nohynek G, Dufour E. Arch. Toxicol., 2012, 86: 1063-1075
[38] Chen X, Schluesener H J. Toxicol. Lett., 2008, 176: 1-12
[39] Slütter B, Plapied L, Fievez V, Alonso S M, des Rieux A, Schneider Y J, van Riet E, Jiskoot W, Prat V. J. Control Release, 2009, 138: 113-121
[40] Jain A K, Goyal A K, Mishra N, Vaidya B, Mangal S, Vyas S P. Int. J. Pharm., 2010, 387: 253-262
[41] Winter M, Beer H D, Hornung V, Krämer U, Schins R P F, Förster I. Nanotoxicology, 2011, 5: 326-340
[42] He C, Yin L, Tang C, Yin C. Biomaterials, 2012, 33: 8569-8578
[43] Van der Zande M, Vandebriel R J, van Doren E, Kramer E, Herrera R Z, Serrano-Rojero C S, Gremmer E R, Mast J, Peters R J B, Hollman P C H, Hendriksen P J M, Marvin H J P, Peijnenburg A A C M, Bouwmeester H. ACS Nano, 2012, 6: 7427-7442
[44] Muthusamy B, Hanumanthu G, Suresh S, Rekha B, Srinivas D, Karthick L, Vrushabendra B M, Sharma S, Mishra G, Chatterjee P, Mangala K S, Shivashankar H N, Chandrika K N, Deshpande N, Suresh M, Kannabiran N, Niranjan V, Nalli A, Prasad T S K, Arun K S, Reddy R, Chandran S, Jadhav T, Julie D, Mahesh M, John S L, Palvankar K, Sudhir D, Bala P, Rashmi N S, Vishnupriya G, Dhar K, Reshma S, Chaerkady R, Gandhi T K B, Harsha H C, Mohan S S, Deshpande K S, Sarker M, Pandey A. Proteomics, 2005, 5: 3531-3536
[45] Cedervall T, Lynch I, Foy M, Berggård T, Donnelly S C, Cagney G, Linse S, Dawson K A. Angew. Chem. Int. Edit., 2007, 46: 5754-5756
[46] Lunov O, Syrovets T, Loos C, Beil J, Delacher M, Tron K, Nienhaus G U, Musyanovych A, Mailänder V, Landfester K, Simmet T. ACS Nano, 2011, 5: 1657-1669
[47] Cole A J, David A E, Wang J, Galbán C J, Hill H L, Yang V C. Biomaterials, 2011, 32: 2183-2193
[48] Gagner J E, Shrivastava S, Qian X, Dordick J S, Siegel R W. J. Phys. Chem. Lett., 2012, 3: 3149-3158
[49] Anand G, Sharma S, Dutta A K, Kumar S K, Belfort G. Langmuir, 2010, 26: 10803-10811
[50] Deng Z J, Liang M, Toth I, Monteiro M, Minchin R F. Nanotoxicology, 2012, 7: 314-322
[51] Gagner J E, Lopez M D, Dordick J S, Siegel R W. Biomaterials, 2011, 32: 7241-7252
[52] De M, Miranda O R, Rana S, Rotello V M. Chem. Commun., 2009, 2157-2159
[53] Aggarwal P, Hall J B, McLeland C B, Dobrovolskaia M A, McNeil S E. Adv. Drug Deliv. Rev., 2009, 61: 428-437
[54] Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson K A, Linse S. Proc. Nat. Acad. Sci. U. S. A., 2007, 104: 2050-2055
[55] Lindman S, Lynch I, Thulin E, Nilsson H, Dawson K A, Linse S. Nano Letters, 2007, 7: 914-920
[56] Gebauer J S, Malissek M, Simon S, Knauer S K, Maskos M, Stauber R H, Peukert W, Treuel L. Langmuir, 2012, 28: 9673-9679
[57] Chakraborti S, Joshi P, Chakravarty D, Shanker V, Ansari Z A, Singh S P, Chakrabarti P. Langmuir, 2012, 28: 11142-11152
[58] Boyer C, Huang X, Whittaker M R, Bulmus V, Davis T P. Soft Matter, 2011, 7: 1599-1614
[59] Peiris R H, Ignagni N, Budman H, Moresoli C, Legge R L. Talanta, 2012, 99: 457-463
[60] Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson K A. Adv. Colloid Interface Sci., 2007, 134/135: 167-174
[61] Gagner J E, Qian X, Lopez M M, Dordick J S, Siegel R W. Biomaterials, 2012, 33: 8503-8516
[62] Norde W. Colloids and Surfaces. B: Biointerfaces, 2008, 61: 1-9
[63] Asuri P, Bale S S, Karajanagi S S, Kane R S. Curr. Opin. Biotech., 2006, 17: 562-568
[64] Roach P, Farrar D, Perry C C. J. Am. Chem. Soc., 2006, 128: 3939-3945
[65] Cabaleiro-Lago C, Lynch I, Dawson K A, Linse S. Langmuir, 2010, 26: 3453-3461
[66] Colvin V L, Kulinowski K M. Proc. Nat. Acad. Sci. U. S. A., 2007, 104: 8679-8680
[67] Zhang D, Neumann O, Wang H, Yuwono V M, Barhoumi A, Perham M, Hartgerink J D, Wittung-Stafshede P, Halas N J. Nano Letters, 2009, 9: 666-671
[68] Vertegel A A, Siegel R W, Dordick J S. Langmuir, 2004, 20: 6800-6807
[69] Deng Z J, Liang M, Monteiro M, Toth I, Minchin R F. Nat. Nano, 2011, 6: 39-44
[70] Calzolai L, Franchini F, Gilliland D, Rossi F. Nano Letters, 2010, 10: 3101-3105
[71] Bharti B, Meissner J, Findenegg G H. Langmuir, 2011, 27: 9823-9833
[72] Lacerda S H D P, Park J J, Meuse C, Pristinski D, Becker M L, Karim A, Douglas J F. ACS Nano, 2009, 4: 365-379
[73] Lesniak A, Fenaroli F, Monopoli M P, berg C, Dawson K A, Salvati A. ACS Nano, 2012, 6: 5845-5857
[74] Zhu Y, Li W, Li Q, Li Y, Li Y, Zhang X, Huang Q. Carbon, 2009, 47: 1351-1358
[75] Walkey C D, Olsen J B, Guo H, Emili A, Chan W C W. J. Am. Chem. Soc., 2011, 134: 2139-2147
[1] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[2] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[3] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[4] Li Zhou, Abdelkrim Yasmine, Zhiguo Jiang, Zhongzhen Yu, Jin Qu. Microplastics: A Review on Biological Effects, Analysis and Degradation Methods [J]. Progress in Chemistry, 2022, 34(9): 1935-1946.
[5] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[6] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[7] Yizhou Yang, Bingquan Peng, Xiaoling Lei, Haiping Fang. Aromatic Rings in Ion Soultions: Two-Dimensional Crystals of Unconventional Stoichiometries and Ferromagnetism [J]. Progress in Chemistry, 2022, 34(7): 1524-1536.
[8] Yanyan Wang, Limin Chen, Siyang Li, Luhua Lai. How Intrinsically Disordered Proteins Modulate Biomolecular Condensates [J]. Progress in Chemistry, 2022, 34(7): 1610-1618.
[9] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[10] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[11] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[12] Chen Yaqiong, Song Hongdong, Wu Mao, Lu Yang, Guan Xiao. Application of Protein-Polysaccharide Complex System in the Delivery of Active Ingredients [J]. Progress in Chemistry, 2022, 34(10): 2267-2282.
[13] Li Geng, Li Jie, Jiang Hongyu, Liang Xiaozhong, Guo Kunpeng. Mechano-Responsive Luminescent Polymers [J]. Progress in Chemistry, 2022, 34(10): 2222-2238.
[14] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[15] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.