中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC121205 Previous Articles   Next Articles

• Review •

Application of Nanoparticles with Targeting, Triggered Release in Anti-Cancer Drug Delivery

Zhang Lei, Liu Xiaoyan, Shen Jingjing, Lu Xiaomei, Fan Quli*, Huang Wei*   

  1. Key Laboratory for Organic Electronics & Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
  • Received: Revised: Online: Published:
PDF ( 1658 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, the higher incidence of cancer has aroused wide public concern. Due to the drawbacks of conventional cancer treatment methods, there has been increasing interest in developing new drug targeting delivery systems with multi-functionalized nanoparticles, such as gold nanoparticles, liposomes, polymers, DNA, etc. Base on the enhanced permeability and retention (EPR) effect, the nanoparticles can present both passive and active targeting mechanisms after modified with the targeting biomoleculars on the surface. And the temperature, pH, ultrasound, light and enzymes can all act as incentives for triggered release in tumor regions. This review examines functionalities engineered into nanoparticles recently, including targeting and triggered release of contents, and these properties have raised new opportunities for drug delivery system. Contents
1 Introduction
2 The nanoparticles for anti-cancer drug delivery system
3 The application of nanoparticles with triggered release
3.1 Heat trigger
3.2 Light trigger
3.3 pH trigger
3.4 Ultrasound trigger
3.5 Enzymatic trigger
4 Conclusion and outlook

CLC Number: 

[1] Loomis K, McNeeley K, Bellamkonda R V. Soft Matter, 2011, 7:839-856
[2] Mollik M A H. J. Immunother, 2012, 35:757-758
[3] Li M D, Qiao C X, Qin L P, Zhang J Y, Ling C Q. J. Tradit. Chin. Med., 2012, 32:299-307
[4] Cho K J, Wang X, Nie S M, Chen Z, Shin D M. Clin. Cancer Res., 2008, 14:1310-1316
[5] Thomas K, Diagaradjane P, Deorukhkar A A, Chatterjee D K, Barry S, Krishnan S. Int. J. Radiat. Oncol., 2012, 84:S691-S692
[6] Yonamine Y, Hoshino Y, Shea K J. Biomacromolecules, 2012, 13:2952-2957
[7] Keereweer S, Mol I M, Kerrebijn J D F, van Driel P B A A, Xie B W, de Jong R J B, Vahrmeijer A L, Lowik C W G M. J. Surg. Oncol., 2012, 105:714-718
[8] Bernareggi A, Oldham F, Barone C. Ann. Oncol., 2004, 15:103-103
[9] Meng H, Xue M, Xia T, Ji Z X, Tarn D Y, Zink J I, Nel A E. Acs Nano, 2011, 5:4131-4144
[10] Iyer A K, Khaled G, Fang J, Maeda H. Drug Discov. Today, 2006, 11:812-818
[11] Yedlapalli S L, White G M, Carroll R L. Abstr. Pap. Am. Chem. S., 2011, 241: 194-COLL
[12] Hasenpusch G, Geiger J, Wagner K, Mykhaylyk O, Wiekhorst F, Trahms L, Heidsieck A, Gleich B, Bergemann C, Aneja M K, Rudolph C. Pharm. Res. Dordr., 2012, 29:1308-1318
[13] Larsen A K, Escargueil A E, Skladanowski A. Pharmacol. Therapeut., 2000, 85:217-229
[14] Wang X, Yang L L, Chen Z, Shin D M. Ca-Cancer J. Clin., 2008, 58:97-110
[15] Kovalainen M, Monkare J, Makila E, Salonen J, Lehto V P, Herzig K H, Jarvinen K. Pharm. Res. Dordr., 2012, 29:837-846
[16] Qian K K, Bogner R H. J Pharm Sci-Us, 2012, 101:444-463
[17] Weinstein J S, Varallyay C G, Dosa E, Gahramanov S, Hamilton B, Rooney W D, Muldoon L L, Neuwelt E A. J. Cerebr. Blood F. Met., 2010, 30:15-35
[18] Nasongkla N, Bey E, Ren J M, Ai H, Khemtong C, Guthi J S, Chin S F, Sherry A D, Boothman D A, Gao J M. Nano Lett., 2006, 6:2427-2430
[19] Li G Y, Guo L, Ma S M. J. Appl. Polym. Sci., 2009, 113:1364-1368
[20] Napoli A, Valentini M, Tirelli N, Muller M, Hubbell J A. Nature Materials, 2004, 3:183-189
[21] Wang S H, Shi X Y, Van Antwerp M, Cao Z Y, Swanson S D, Bi X D, Baker J R. Adv. Funct. Mater., 2007, 17:3043-3050
[22] Dickerson E B, Blackburn W H, Smith M H, Kapa L B, Lyon L A, McDonald J F. BMC Cancer, 2010, 10:art. no. 10
[23] Pradhan P, Giri J, Rieken F, Koch C, Mykhaylyk O, Doblinger M, Banerjee R, Bahadur D, Plank C. J. Control Release, 2010, 142:108-121
[24] Torchilin V P. Pharm. Res-Dordr, 2007, 24:1-16
[25] Puri A, Loomis K, Smith B, Lee J H, Yavlovich A, Heldman E, Blumenthal R. Crit. Rev. Ther. Drug, 2009, 26:523-580
[26] Cosco D, Paolino D, Muzzalupo R, Celia C, Citraro R, Caponio D, Picci N, Fresta M. Biomed. Microdevices, 2009, 11:1115-1125
[27] Hong M H, Zhu S J, Jiang Y Y, Tang G T, Pei Y Y. J. Control Release, 2009, 133:96-102
[28] Guo C X, Yang H B, Sheng Z M, Lu Z S, Song Q L, Li C M. Angew. Chem. Int. Ed., 2010, 49:3014-3017
[29] Huang X H, El-Sayed I H, Qian W, El-Sayed M A. J. Am. Chem. Soc., 2006, 128:2115-2120
[30] Basiruddin S K, Maity A R, Saha A, Jana N R. J. Phys. Chem. C, 2011, 115:19612-19620
[31] Kuo T R, Hovhannisyan V A, Chao Y C, Chao S L, Chiang S J, Lin S J, Dong C Y, Chen C C. J. Am. Chem. Soc., 2010, 132:14163-14171
[32] Chen K, Li Z B, Wang H, Cai W B, Chen X Y. Eur. J. Nucl. Med. Mol. I., 2008, 35:2235-2244
[33] Xue Y D, Bao L, Xiao X R, Ding L, Lei J P, Ju H X. Anal. Biochem., 2011, 410:92-97
[34] Jiang Q, Song C, Nangreave J, Liu X W, Lin L, Qiu D L, Wang Z G, Zou G Z, Liang X J, Yan H, Ding B Q. J. Am. Chem. Soc., 2012, 134:13396-13403
[35] Li J, Pei H, Zhu B, Liang L, Wei M, He Y, Chen N, Li D, Huang Q, Fan C H. ACS Nano, 2011, 5:8783-8789
[36] Chen P C, Hayashi M A F, Oliveira E B, Karpel R L. PLoS One, 2012, 7:e48913
[37] Cheng X Y, Zhang F, Zhou G X, Gao S Y, Dong L, Jiang W, Ding Z, Chen J N, Zhang J F. Drug Deliv., 2009, 16:135-144
[38] Wang Z J, Qian L, Wang X L, Yang F, Yang X R. Colloid. Surface. A, 2008, 326:29-36
[39] Hayashi K, Ono K, Suzuki H, Sawada M, Moriya M, Sakamoto W, Yogo T. ACS Appl. Mater. Interfaces, 2010, 2:1903-1911
[40] Ruiz-Hernandez E, Baeza A, Vallet-Regi M. ACS Nano, 2011, 5:1259-1266
[41] Wu G, Mikhailovsky A, Khant H A, Fu C, Chiu W, Zasadzinski J A. J. Am. Chem. Soc., 2008, 130:8175-8177
[42] Paasonen L, Laaksonen T, Johans C, Yliperttula M, Kontturi K, Urth A. J. Control Release, 2007, 122:86-93
[43] Wei H, Cheng S X, Zhang X Z, Zhuo R X. Prog. Polym. Sci., 2009, 34:893-910
[44] Dvir T, Banghart M R, Timko B P, Langer R, Kohane D S. Nano Lett., 2010, 10:250-254
[45] Muhammad F, Guo M, Qi W, Sun F, Wang A, Guo Y, Zhu G. J. Am. Chem. Soc., 2011, 133:8778-8781
[46] Mei X, Chen D Y, Li N J, Xu Q F, Ge J F, Li H, Lu J M. Micropor. Mesopor. Mat., 2012, 152:16-24
[47] Li C G, Xing L, Che S A. Dalton Trans., 2012, 41:3714-3719
[48] Chen F, Zhu Y C. Micropor. Mesopor. Mat., 2012, 150:83-89
[49] Xie L L, Tong W J, Yu D H, Xu J Q, Li J, Gao C Y. J. Mater. Chem., 2012, 22:6053-6060
[50] Uhrich K E, Cannizzaro S M, Langer R S, Shakesheff K M. Chem. Rev., 1999, 99:3181-3198
[51] Kim H J, Matsuda H, Zhou H S, Honma I. Adv. Mater., 2006, 18:3083-3088
[52] Wu D C, Wan M X. J. Pharm. Pharm. Sci., 2008, 11:32-45
[53] Rapoport N, Gao Z G, Kennedy A. J. Natl. Cancer. Inst., 2007, 99:1095-1106
[54] Ibsen S, Benchimol M, Simberg D, Schutt C, Steiner J, Esener S. J. Control Release, 2011, 155:358-366
[55] Ashush H, Rozenszajn L A, Blass M, Barda-Saad M, Azimov D, Radnay J, Zipori D, Rosenschein U. Cancer Res., 2000, 60:1014-1020
[56] Schroeder A, Avnir Y, Weisman S, Najajreh Y, Gabizon A, Talmon Y, Kost J, Barenholz Y. Langmuir, 2007, 23:4019-4025
[57] Terada T, Iwai M, Kawakami S, Yamashita F, Hashida M. J. Control Release, 2006, 111:333-342
[58] Zhang R N, Bai Y H, Zhang B, Chen L X, Yan B. J. Hazard. Mater., 2012, 211:404-413
[59] Oberdorster G. J. Intern. Med., 2010, 267:89-105
[60] Barillet S, Simon-Deckers A, Herlin-Boime N, Mayne-L'Hermite M, Reynaud C, Cassio D, Gouget B, Carriere M. J. Nanopart. Res., 2010, 12:61-73
[61] Tejral G, Panyala N R, Havel J. J. Appl. Biomed., 2009, 7:1-13
[1] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[2] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[3] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[4] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[5] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[6] Dong Yang, Keyi Gao, Baiqin Yang, Lei Lei, Lixia Wang, Chaohua Xue. Classification of Microfluidic System and Applications in Nanoparticles Synthesis [J]. Progress in Chemistry, 2021, 33(3): 368-379.
[7] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[8] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[9] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[10] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[11] Yifan Xue, Wenhui Meng, Runze Wang, Junjie Ren, Weili Heng, Jianjun Zhang. Supersaturation Theory and Supersaturating Drug Delivery System(SDDS) [J]. Progress in Chemistry, 2020, 32(6): 698-712.
[12] Tianxi He, Wenbin Wang, Jiu Wang, Boshui Chen, Qionglin Liang. Mesoporous Carbon Spheres: Synthesis and Applications in Drug Delivery System [J]. Progress in Chemistry, 2020, 32(2/3): 309-319.
[13] Rui Bai, Xiaochun Tian, Shuhua Wang, Weifu Yan, Haiyin Gang, Yong Xiao. Noble Metal Nanoparticles Produced by Microorganism [J]. Progress in Chemistry, 2019, 31(6): 872-881.
[14] Liu Xu, Chen Qian, Chenqi Zhu, Zhipeng Chen, Rui Chen*. The Study of Peptides Nanomedicine for Drug Delivery Systems [J]. Progress in Chemistry, 2018, 30(9): 1341-1348.
[15] Yihuan Liu, Xin Hu, Ning Zhu, Kai Guo. Microfluidic Synthesis of Micro-and Nanoparticles [J]. Progress in Chemistry, 2018, 30(8): 1133-1142.