中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC121201 Previous Articles   Next Articles

• Review •

Iron Compound-Based Heterogeneous Fenton Catalytic Oxidation Technology

Wang Yanbin1, Zhao Hongying*2, Zhao Guohua*1,2, Wang Yujing2, Yang Xiuchun1   

  1. 1. School of Materials Science and Engineering, Tongji University, Shanghai 201804, China;
    2. Department of Chemistry, Tongji University, Shanghai 200092, China
  • Received: Revised: Online: Published:
PDF ( 1873 ) Cited
Export

EndNote

Ris

BibTeX

Heterogeneous Fenton catalytic oxidation technology is a powerful method for degradation of various kinds of non-biodegradable pollutants at moderate condition. Heterogeneous Fenton as the evolution of homogeneous Fenton reaction, offer the advantage of allowing easier separation from treated water and reuse, and wider field of application. This article mainly reviews the development of various iron-based materials, such as zero-valent iron, iron oxides, iron (hydr)oxides, ferrihydrite and other iron compounds, as heterogeneous catalysts for degrading organic pollutants. The mechanisms of Fenton reaction are comprehensively illustrated, including the free radical mechanism and the high-valent iron mechanism. Particularly, the emphasis is to summarize the catalytic activity of different heterogeneous Fenton catalysts, and point out that the catalytic efficiency of heterogeneous Fenton catalyst is strongly affected by the surface oxidation state, specific surface area, kinds of doped transition metal and the crystalline phase of catalysts. The different ways to improve the catalytic efficiency of heterogeneous Fenton catalysts are also concluded as: reducing the size of catalysts to nano-scales, loading the catalysts onto carriers with high specific surface area, introducing transition metal (such as Ti, Co, Mn, Cr and V) into the structure of iron oxide. In addition, some novel catalysts such as ferrites are especially paid attention due to their high catalytic activity and stability. Finally, the prospects of the development of the heterogeneous Fenton catalytic oxidation technology is given. We believe that an ideal heterogeneous Fenton catalyst should possess high catalytic efficiency and H2O2 utilization, good chemical stability, effectiveness at extend pH range and the ability of easy to be recycled. Contents
1 Introduction
1.1 Homogeneous Fenton catalytic oxidation technol-ogy
1.2 Heterogeneous Fenton catalytic oxidation techno-logy
2 Advantages, applications and developments of iron compound-based heterogeneous catalysts
2.1 Magnetite (Fe3O4)
2.2 Hematite (α-Fe2O3)
2.3 Maghemite (γ-Fe2O3)
2.4 Goethite (α-FeOOH)
2.5 Akaganeite (β-FeOOH)
2.6 Lepidocrocite (γ-FeOOH)
2.7 Feroxyhyte (δ-FeOOH)
2.8 Ferrihydrite (Fe5HO8·4H2O)
2.9 Other iron compounds
2.10 Zero valence iron (Fe0)
3 Conclusion and outlook

CLC Number: 

[1] 尹玉林(Yin Y L), 肖羽堂(Xiao Y T), 朱莹佳(Zhu Y J), 水处理技术(Technology of Water Treatment), 2009, 35: 5-9, 17
[2] 张乃东(Zhang N D), 郑威(Zheng W), 化工进展(Chemical Industry and Engineering Progress), 2001, 20: 1-3
[3] Hartmann M, Kullmann S, Keller H, J. Mater. Chem., 2010, 20: 9002-9017
[4] Pignatello J J, Oliveros E, MacKay A, Crit. Rev. Env. Sci. Technol., 2006, 36: 1-84
[5] Navalon S, Alvaro M, Garcia H. Appl. Catal. B-Environ., 2010, 99: 1-26
[6] Dhakshinamoorthy A, Navalon S, Alvaro M, Garcia H. ChemSusChem, 2012, 5: 46-64
[7] Fenton H J H. J. Chem. Soc., 1894, 65: 899-910
[8] Haber F, Weiss J. Proc. R. Soc. London, Ser. A, 1934, 147: 332-351
[9] Bray W C, Gorin M H. J. Am. Chem. Soc., 1932, 54: 2124-2125
[10] Ensing B, Buda F, Baerends E J. J. Phys. Chem. A, 2003, 107: 5722-5731
[11] Duarte F, Maldonado-Hodar F J, Perez-Cadenas A F, Madeira L M. Appl. Catal. B-Environ., 2009, 85: 139-147
[12] Yang S J, He H P, Wu D Q, Chen D, Liang X L, Qin Z H, Fan M D, Zhu J X, Yuan P. Appl. Catal. B-Environ., 2009, 89: 527-535
[13] Huang R X, Fang Z Q, Yan X M, Cheng W. Chem. Eng. J., 2012, 197: 242-249
[14] Yang S J, He H P, Wu D Q, Chen D, Ma Y H, Li X L, Zhu J X, Yuan P. Ind. Eng. Chem. Res., 2009, 48: 9915-9921
[15] Xue X F, Hanna K, Despas C, Wu F, Deng N S. J. Mol. Catal. A: Chem., 2009, 311: 29-35
[16] Luo W, Zhu L H, Wang N, Tang H Q, Cao M J, She Y B. Environ. Sci. Technol., 2010, 44: 1786-1791
[17] Xu L J, Wang J L. Appl. Catal. B-Environ., 2012, 123: 117-126
[18] Xu L, Wang J. Environ. Sci. Technol., 2012, 46: 10145-10153
[19] Lin S S, Gurol M D. Environ. Sci. Technol., 1998, 32: 1417-1423
[20] Hu X B, Liu B Z, Deng Y H, Chen H Z, Luo S, Sun C, Yang P, Yang S G. Appl. Catal. B-Environ., 2011, 107: 274-283
[21] Pham A L T, Lee C, Doyle F M, Sedlak D L. Environ. Sci. Technol., 2009, 43: 8930-8935
[22] Pignatello J J. Environ. Sci. Technol., 1992, 26: 944-951
[23] Keenan C R, Sedlak D L. Environ. Sci. Technol., 2008, 42: 6936-6941
[24] Keenan C R, Sedlak D L. Environ. Sci. Technol., 2008, 42: 1262-1267
[25] Lee C, Sedlak D L. Environ. Sci. Technol., 2008, 42: 8528-8533
[26] Bossmann S H, Oliveros E, Göb S, Siegwart S, Dahlen E P, Payawan L, Straub M, Wörner M, Braun A M. J. Phys. Chem. A, 1998, 102: 5542-5550
[27] Hug S J, Leupin O. Environ. Sci. Technol., 2003, 37: 2734-2742
[28] Katsoyiannis I A, Ruettimann T, Hug S J. Environ. Sci. Technol., 2008, 42: 7424-7430
[29] Pestovsky O, Stoian S, Bominaar E L, Shan X P, Munck E, Que L, Bakac A. Angew. Chem. Int. Ed., 2005, 44: 6871-6874
[30] Pang S Y, Jiang J, Ma J. Environ. Sci. Technol., 2011, 45: 307-312
[31] Pang S Y, Jiang J, Ma J. Environ. Sci. Technol., 2011, 45: 3179-3180
[32] Remucal C K, Lee C, Sedlak D L. Environ. Sci. Technol., 2011, 45: 3177-3178
[33] Sun S P, Lemley A T. J. Mol. Catal. A: Chem., 2011, 349: 71-79
[34] Wu H H, Dou X W, Deng D Y, Guan Y F, Zhang L G, He G P. Environ. Technol., 2012, 33: 1545-1552
[35] Pinto I S X, Pacheco P H V V, Coelho J V, Lorencon E, Ardisson J D, Fabris J D, de Souza P P, Krambrock K W H, Oliveira L C A, Pereira M C. Appl. Catal. B-Environ., 2012, 119: 175-182
[36] Choi K, Lee W. J. Hazard. Mater., 2012, 211: 146-153
[37] Laurent S, Forge D, Port M, Roch A, Robic C, Elst L V, Muller R N, Chem. Rev., 2008, 108: 2064-2110
[38] Parks G A. Chem. Rev., 1965, 65: 177-198
[39] Liang X L, Zhong Y H, Zhu S Y, Zhu J X, Yuan P, He H P, Zhang J. J. Hazard. Mater., 2010, 181: 112-120
[40] Du W P, Xu Y M, Wang Y S. Langmuir, 2008, 24: 175-181
[41] Huang H H, Lu M C, Chen J N. Water Res., 2001, 35: 2291-2299
[42] He J, Ma W H, He J J, Zhao J C, Yu J C. Appl. Catal. B-Environ., 2002, 39: 211-220
[43] Chou S S, Huang C P. Appl. Catal. A-Gen., 1999, 185: 237-245
[44] Liao Q, Sun J, Gao L. Colloids Surf. A, 2009, 345: 95-100
[45] Romero A, Santos A, Vicente F. J. Hazard. Mater., 2009, 162: 785-790
[46] Ramirez J H, Maldonado-Hodar F J, Perez-Cadenas A F, Moreno-Castilla C, Costa C A, Madeira L M. Appl. Catal. B-Environ., 2007, 75: 312-323
[47] Lam S W, Chiang K, Lim T M, Amal R, Low G K C. J. Catal., 2005, 234: 292-299
[48] Bai C P, Gong W Q, Feng D X, Xian M, Zhou Q, Chen S H, Ge Z X, Zhou Y S. Chem. Eng. J., 2012, 197: 306-313
[49] Costa R C C, Moura F C C, Ardisson J D, Fabris J D, Lago R M. Appl. Catal. B-Environ., 2008, 83: 131-139
[50] Hermanek M, Zboril R, Medrik N, Pechousek J, Gregor C. J. Am. Chem. Soc., 2007, 129: 10929-10936
[51] Prucek R, Hermanek M, Zboril R. Appl. Catal. A-Gen., 2009, 366: 325-332
[52] Gao L Z, Zhuang J, Nie L, Zhang J B, Zhang Y, Gu N, Wang T H, Feng J, Yang D L, Perrett S, Yan X. Nat. Nanotechnol., 2007, 2: 577-583
[53] Zhang J B, Zhuang J, Gao L Z, Zhang Y, Gu N, Feng J, Yang D L, Zhu J D, Yan X Y. Chemosphere, 2008, 73: 1524-1528
[54] Gregor C, Hermanek M, Jancik D, Pechousek J, Filip J, Hrbac J, Zboril R. Eur. J. Inorg. Chem., 2010, 2343-2351
[55] Guimaraes I R, Giroto A, Oliveira L C A, Guerreiro M C, Lima D Q, Fabris J D. Appl. Catal. B-Environ., 2009, 91: 581-586
[56] Wang W, Li T L, Liu Y, Zhou M H. Adv. Mater. Res. -Switz, 2011, 233/235: 487-490
[57] Zhang S X, Zhao X L, Niu H Y, Shi Y L, Cai Y Q, Jiang G B. J. Hazard. Mater., 2009, 167: 560-566
[58] Wang X M, Yang K G, Sun S F, Xu J, Li Y G, Liu F, Feng X H. Earth Science Frontiers, 2011, 18: 339-347
[59] Kwan W P, Voelker B M. Environ. Sci. Technol., 2003, 37: 1150-1158
[60] Lee S, Oh J, Park Y. Bull. Korean Chem. Soc., 2006, 27: 489-494
[61] Costa R C C, Lelis M F F, Oliveira L C A, Fabris J D, Ardisson J D, Rios R R V A, Silva C N, Lago R M. J. Hazard. Mater., 2006, 129: 171-178
[62] Xue X F, Hanna K, Abdelmoula M, Deng N S. Appl. Catal. B-Environ., 2009, 89: 432-440
[63] Wang N, Zhu L H, Wang D L, Wang M Q, Lin Z F, Tang H Q, Ultrason. Sonochem., 2010, 17: 526-533
[64] Deng J, Wen X, Wang Q. Mater. Res. Bull., 2012, 47: 3369-3376
[65] Shin S, Yoon H, Jang J. Catal. Commun., 2008, 10: 178-182
[66] Niu H Y, Zhang D, Zhang S X, Zhang X L, Meng Z F, Cai Y Q. J. Hazard. Mater., 2011, 190: 559-565
[67] Niu H Y, Dizhang, Meng Z F, Cai Y Q. J. Hazard. Mater., 2012, 227: 195-203
[68] Lim H, Lee J, Jin S, Kim J, Yoon J, Hyeon T. Chem. Commun., 2006, 463-465
[69] Chun J, Lee H, Lee S H, Hong S W, Lee J, Lee C. Chemosphere, 2012, 89: 1230-1237
[70] Costa R C C, de Fatima M, Lelis F, Oliveira L C A, Fabris J D, Ardisson J D, Rios R R V A, Silva C N, Lago R M. Catal. Commun., 2003, 4: 525-529
[71] Magalhaes F, Pereira M C, Botrel S E C, Fabris J D, Macedo W A, Mendonca R, Lago R M, Oliveira L C A. Appl. Catal. A-Gen., 2007, 332: 115-123
[72] Liang X L, Zhu S Y, Zhong Y H, Zhu J X, Yuan P, He H P, Zhang J. Appl. Catal. B-Environ., 2010, 97: 151-159
[73] Liang X L, Zhong Y H, Zhu S Y, Ma L Y, Yuan P, Zhu J X, He H P, Jiang Z. J. Hazard. Mater., 2012, 199: 247-254
[74] Nie Y L, Hu C, Qu J H, Zhao X. Appl. Catal. B-Environ., 2009, 87: 30-36
[75] Xing S T, Zhou Z C, Ma Z C, Wu Y S. Appl. Catal. B-Environ., 2011, 107: 386-392
[76] Heckert E G, Seal S, Self W T. Environ. Sci. Technol., 2008, 42: 5014-5019
[77] Feng J Y, Hu X J, Yue P L. Environ. Sci. Technol., 2004, 38: 5773-5778
[78] Dantas T L P, Mendonca V P, Jose H J, Rodrigues A E, Moreira R F P M. Chem. Eng. J., 2006, 118: 77-82
[79] Zhang G K, Gao Y Y, Zhang Y L, Guo Y D. Environ. Sci. Technol., 2010, 44: 6384-6389
[80] Silva A C, Cepera R M, Pereira M C, Lima D Q, Fabris J D, Oliveira L C A. Appl. Catal. B-Environ., 2011, 107: 237-244
[81] Guo L Q, Chen F, Fan X Q, Cai W D, Zhang J L. Appl. Catal. B-Environ., 2010, 96: 162-168
[82] Melero J A, Calleja G, Martinez F, Molina R. Catal. Commun., 2006, 7: 478-483
[83] Voinov M A, Pagan J O S, Morrison E, Smirnova T I, Smirnov A I. J. Am. Chem. Soc., 2011, 133: 35-41
[84] Xia M, Chen C, Long M C, Chen C, Cai W M, Zhou B X. Micropor. Mesopor. Mat., 2011, 145: 217-223
[85] Lu M C. Chemosphere, 2000, 40: 125-130
[86] Barreiro J C, Capelato M D, Martin-Neto L, Hansen H C B. Water Res., 2007, 41: 55-62
[87] He J, Tao X, Ma W H, Zhao J C. Chem. Lett., 2002, 86-87
[88] 杨波(Yang P), 胡晓斌(Hu X B), 陈泓哲(Chen H Z), 杨绍贵(Yang S G), 孙成(Sun C), 王磊(Wang L), 环境化学(Environmental Chemistry), 2012, 31: 1131-1136
[89] de la Plata G B O, Alfano O M, Cassano A E. Appl. Catal. B-Environ., 2010, 95: 14-25
[90] de la Plata G B O, Alfano O M, Cassano A E. Appl. Catal. B-Environ., 2010, 95: 1-13
[91] Andreozzi R, D'Apuzzo A, Marotta R. Water Res., 2002, 36: 4691-4698
[92] Souza W F, Guimaraes I R, Lima D Q, Silva C L T, Oliveira L C A. Energ. Fuel, 2009, 23: 4426-4430
[93] Liou M J, Lu M C. J. Hazard. Mater., 2008, 151: 540-546
[94] de Souza W F, Guimaraes I R, Oliveira L C A, Giroto A S, Guerreiro M C, Silva C L T. Appl. Catal. A-Gen., 2010, 381: 36-41
[95] Oliveira L C A, Goncalves M, Guerreiro M C, Ramalho T C, Fabris J D, Pereira M C, Sapag K. Appl. Catal. A-Gen., 2007, 316: 117-124
[96] Guimaraes I R, Oliveira L C A, Queiroz P F, Ramalho T C, Pereira M, Fabris J D, Ardisson J D. Appl. Catal. A-Gen., 2008, 347: 89-93
[97] Zhang G Q, Wang S, Yang F L. J. Phys. Chem. C, 2012, 116: 3623-3634
[98] Zhao Y P, Hu J Y, Chen H B. J. Photochem. Photobiol. A, 2010, 212: 94-100
[99] Anaissi F J, Villalba J C, Fujiwara S T, Cotica L F, de Souza C R L, Zamora-Peralta P. Quim. Nova, 2009, 32: 2006-U293
[100] Chou S S, Huang C P, Huang Y H. Environ. Sci. Technol., 2001, 35: 1247-1251
[101] Deng J H, Jiang J Y, Zhang Y Y, Lin X P, Du C M, Xiong Y. Appl. Catal. B-Environ., 2008, 84: 468-473
[102] Baldrian P, Merhautova V, Gabriel J, Nerud F, Stopka P, Hruby M, Benes M J. Appl. Catal. B-Environ., 2006, 66: 258-264
[103] Valdes-Solis T, Valle-Vigon P, Alvarez S, Marban G, Fuertes A B. Catal. Commun., 2007, 8: 2037-2042
[104] Thi D N, Ngoc H P, Manh H D, Kim T N. J. Hazard. Mater., 2011, 185: 653-661
[105] Valdes-Solis T, Valle-Vigon P, Sevilla M, Fuertes A B. J. Catal., 2007, 251: 239-243
[106] Barreto-Rodrigues M, Silva F T, Paiva T C B. J. Hazard. Mater., 2009, 165: 1224-1228
[107] Barreto-Rodrigues M, Silva F T, Paiva T C B. J. Hazard. Mater., 2009, 168: 1065-1069
[108] Kallel M, Belaid C, Boussahel R, Ksibi M, Montiel A, Elleuch B. J. Hazard. Mater., 2009, 163: 550-554
[109] Kallel M, Belaid C, Mechichi T, Ksibi M, Elleuch B. Chem. Eng. J., 2009, 150: 391-395
[110] Feitz A J, Joo S H, Guan J, Sun Q, Sedlak D L, Waite T D. Colloids Surf. A, 2005, 265: 88-94
[111] Liao C J, Chung T L, Chen W L, Kuo S L. J. Mol. Catal. A-Chem., 2007, 265: 189-194
[112] Zhou T, Li Y Z, Ji J, Wong F S, Lu X H. Sep. Purif. Technol., 2008, 62: 551-558
[113] Xu L J, Wang J L. J. Hazard. Mater., 2011, 186: 256-264
[114] Abdessalem A K, Oturan N, Bellakhal N, Dachraoui M, Oturan M A. J. Adv. Oxid. Technol., 2008, 11: 276-282
[115] Ai Z H, Lu L R, Li J P, Zhang L Z, Qiu J R, Wu M H. J. Phys. Chem. C, 2007, 111: 7430-7436
[116] Ai Z H, Lu L R, Li J P, Zhang L Z, Qiu J R, Wu M H. J. Phys. Chem. C, 2007, 111: 4087-4093
[117] Luo T, Ai Z H, Zhang L Z. J. Phys. Chem. C, 2008, 112: 8675-8681
[1] Feng Li, Qingyun He, Fang Li, Xiaolong Tang, Changlin Yu. Materials for Hydrogen Peroxide Production via Photocatalysis [J]. Progress in Chemistry, 2023, 35(2): 330-349.
[2] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[3] Wenyan Gao, Xuan Zhao, Xilin Zhou, Yaran Song, Qingrui Zhang. Strategies, Research Progress and Enlightenment of Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Critical Review [J]. Progress in Chemistry, 2022, 34(5): 1191-1202.
[4] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[5] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[6] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[7] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[8] Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng. Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism [J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
[9] Wenliang Han, Linyang Dong. Activation Methods of Advanced Oxidation Processes Based on Sulfate Radical and Their Applications in The Degradation of Organic Pollutants [J]. Progress in Chemistry, 2021, 33(8): 1426-1439.
[10] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[11] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[12] Meirong Kang, Fuxiang Jin, Zhen Li, Heyuan Song, Jing Chen. Research and Application of Supported Ionic Liquids [J]. Progress in Chemistry, 2020, 32(9): 1274-1293.
[13] Chen Hou, Wenqiang Chen, Linhui Fu, Sufeng Zhang, Chen Liang. Covalent Organic Frameworks(COFs) Materials in Enzyme Immobilization and Mimic Enzymes [J]. Progress in Chemistry, 2020, 32(7): 895-905.
[14] Xinzhi Wang, Hongli Wang, Feng Shi. Alcohol Amination for N-Alkyl Amine Synthesis with Heterogeneous Catalysts [J]. Progress in Chemistry, 2020, 32(2/3): 162-178.
[15] Xingwang Lan, Guoyi Bai. Covalent Organic Framework Catalytic Materials: CO2 Conversion and Utilization [J]. Progress in Chemistry, 2020, 32(10): 1482-1493.