中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (07): 1198-1207 DOI: 10.7536/PC121161 Previous Articles   Next Articles

Special Issue: 酶化学

• Review •

Preparation and Application of Immobilized Enzyme Micro-Reactor

Shen Gangyi1*, Yu Wanting1, Liu Meirong2, Cui Xun1,3*   

  1. 1. Institute of Chinese Minority Traditional Medicine, Minzu University of China, Beijing 100081, China;
    2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    3. Department of Oriental Pharmacy, Woosuk University,Wanju-gun,Jeonbuk 565-701,South Korea
  • Received: Revised: Online: Published:
PDF ( 1529 ) Cited
Export

EndNote

Ris

BibTeX

As one kind of new biochemical reaction device, immobilized enzyme micro-reactor is the combination of biomolecule immobilizing technique and modern micro-reaction method. In view of its advantages in efficiency, economy and addressable recognition specially, micro-reactor plays a significant role in the research of life science, such as proteomics, screening of enzyme inhibitors, biocatalysis and so on. With the development of immobilizing materials and fabrication methods, the performance of enzyme micro-reactor has been improved greatly, and enzyme micro-reactor has been applied to many research fields. This article focuses on the preparation methods and the applications of immobilized enzyme micro-reactor for the past few years. The advantages and shortcomings of the current state-of-the-art preparation methods are particularly discussed. In addition, the prospects of its future study are outlined. Contents
1 Introduction
2 Preparation of immobilized enzyme micro-reactor
2.1 Convalent bonding
2.2 Physical adsorption
2.3 Encapsulation
2.4 Metal-ion chelated adsorption
2.5 Biological binding
3 Applications
4 Outlook

CLC Number: 

[1] Weetall H H. Biochim. Biophys. Acta, 1970, 212: 1-7
[2] Zhang Z B, Wang F J, Xua B, Qin H Q, Ye M L, Zou H F. J. Chromatogr. A, 2012, 1256: 136- 143
[3] Wang F J, Wei X L, Zhou H, Liu J, Figeys D, Zou H F. Proteomics, 2012, 12: 3129-3137
[4] Zhang X M, Liu B H, Zhang L H, Zou H F, Cao J, Gao M X, Tang J, Li Y, Yang P Y, Zhang Y K. Sci. China Chem., 2010, 53(4): 685-694
[5] Krenkova J, Foret F. Electrophoresis, 2004, 25: 3550-3563
[6] 马俊锋(Ma J F), 段继诚(Duan J C), 梁振( Liang Z), 张丽华(Zhang L H), 张维冰(Zhang W B), 张玉奎(Zhang Y K).分析化学(Chinese J. Anal. Chem.), 2006, 11: 1649-1655
[7] Simonet B M, Ríós A, Valcárcel M. Electrophoresis, 2004, 25: 50-56
[8] Thelhan S, Jadaud D, Wainer I W. Chromatographia, 1989, 28: 551-555
[9] Melander C, Momcilovic D, Nilsson C, Bengtsson M, Schagerlǒf H, Tjerneld F, Laurell T, Reimann C T, Gorton L. Anal. Chem., 2005, 77: 3284-3291
[10] 郭忠(Guo Z), 张清春(Zhang Q C), 雷政登(Lei Z D), 孔亮(Kong L), 毛希琴(Mao X Q), 邹汉法(Zou H F). 高等学校化学学报(Chem. J. Chinese Universities), 2002, 23(7): 1277-1280
[11] Costantini F, Benetti E M, Reinhoudt D N, Huskens J, Vancso G J, Verboom W. Lab Chip, 2010, 10(24): 3407-3412
[12] Yamaguch H, Miyazaki M, Honda T, Briones-Nagata M P, Arima K, Maeda H. Electrophoresis, 2009, 30: 3257-3264
[13] Zhang Q, Xu J J, Chen H Y. Electrophoresis, 2006, 27: 4943-4951
[14] Lee J, Soper S A, Murray K K. Analyst, 2009, 134: 2426-2433
[15] Slovakova M, Minc N, Bilkova Z, Smadja C, Faigle W, Fütterer C, Taverna M, Viovy J L. Lab Chip, 2005, 5: 935-942
[16] Nel A L, Minc N, Smadja C, Slovakova M, Bilkova Z, Peyrin J M, Viovy J L, Taverna M. Lab Chip, 2008, 8: 294-301
[17] Li S, Yao G P, Qi D W, Li Y, Deng C H, Yang P Y, Zhang X M. Anal. Chem., 2008, 80: 3655-3665
[18] Li Y, Xu X Q, Yan B, Deng C H, Yu W J, Yang P Y, Zhang X M. J. Proteome Res., 2007, 6: 2367-2375
[19] Li Y, Xu X Q, Deng C H, Yang P Y, Zhang X M. J. Proteome Res., 2007, 6: 3849-3855
[20] 辛宝娟(Xin B J), 刑国文(Xing G W). 化学进展(Prog. Chem.), 2010, 22: 593-602
[21] Adalberto P R, dos Santos F J, Golfeto C C, Iemma M R C, de Souzaa D H F, Cass Q B. Analyst, 2012, 137: 4855-4859
[22] Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N. Anal. Chem., 1996, 68: 3498-3501
[23] Peterson D S, Rohr T, Svec F, Fréchet J M J. Anal. Chem., 2002, 74: 4081-4088
[24] Dulay M T, Baca Q J, Zare R N. Anal. Chem., 2005, 77: 4604-4610
[25] Feng S, Ye M L, Jiang X G, Jin W H, Zou H F. J. Proteome Res., 2006, 5: 422-428
[26] Chen Y Z, Wu M H, Wang K Y, Chen B, Yao S Z, Zou H F, Nie L H. J. Chromatogr. A, 2011, 1218: 7982-7988
[27] Guo Z, Xu S Y, Lei Z D, Zou H F, Guo B C. Electrophoresis, 2003, 24: 3633-3639
[28] Spro J, Sinz A. Anal. Chem., 2010, 82: 1434-1443
[29] Logan T C, Clark D S, Stachowiak T B, Svec F, Fréchet J M J. Anal. Chem., 2007, 79: 6592-6598
[30] Krenkova J, Lacher N A, Svec F. Anal. Chem., 2009, 81: 2004-2012
[31] Abele S, Smejkal P, Yavorska O, Foret F, Macka M. Analyst, 2010, 135: 477-481
[32] Hayes J D, Malik A. Anal. Chem., 2000, 72: 4090-4099
[33] Ma J F, Liang Z, Qiao X Q, Deng Q L, Tao D Y, Zhang L H, Zhang Y K. Anal. Chem., 2008, 80: 2949-2956
[34] 吴帅宾(Wu S B), 马俊锋(Ma J F), 杨开广(Yang K G), 刘晋湘(Liu J X), 梁振(Liang Z), 张丽华(Zhang L H), 张玉奎(Zhang Y K). 中国科学(Science China), 2010, 40(9): 874-879
[35] Wu M H, Zhang H Q, Wang Z X, Shen S W, Le X C, Li X F. Chem. Commun., 2013, 49: 1407-1409
[36] Tang Z M, Kang J W. Anal. Chem., 2006, 78: 2514-2520
[37] Tang Z M, Wang T D, Kang J W. Electrophoresis, 2007, 28: 2981-2987
[38] Liu A L, Zhou T, He F Y, Xu J J, Lu Y, Chen H Y, Xia X H. Lab Chip, 2006, 6: 811-818
[39] Ji J, Zhang Y H, Zhou X Q, Kong J L, Tang Y, Liu B H. Anal. Chem., 2008, 80: 2457-2463
[40] Liu Y, Lu H J, Zhong W, Song P Y, Kong J L, Yang P Y, Girault H H, Liu B H. Anal. Chem., 2006, 78: 801-808
[41] Jiao J, Miao A, Zhang X, Cai Y, Lu Y, Zhang Y, Lu H. Analyst, 2013, 138: 1645-1648
[42] Bao H, Chen Q, Zhang L, Chen G. Analyst, 2011, 138: 5190-5196
[43] Feng S, Yang N, Pennathur S, Goodison S, Lubman D M. Anal. Chem., 2009, 81: 3776-3783
[44] Mao H B, Yang T L, Cremer P S. Anal. Chem., 2002, 74: 379-385
[45] Holden M A, Jung S Y, Cremer P S. Anal. Chem., 2004, 76: 1838-1843
[46] Vong T, Schoffelen S, van Dongen S F M, van Beek T A, Zuilhof H, van Hest J C M. Chem. Sci., 2011, 2: 1278-1285
[47] Sakai-Kato K, Kato M, Toyo'oka T. Anal. Chem., 2002, 74: 2943-2949
[48] Sakai-Kato K, Kato M, Toyo'oka T. Anal. Chem., 2003, 75: 388-393
[49] Qu H Y, Wang H T, Huang Y, Zhong W, Lu H J, Kong J L, Yang P Y, Liu B H. Anal. Chem., 2004, 76: 6426-6433
[50] Huang Y, Shan W, Liu B H, Liu Y, Zhang Y H, Zhao Y, Lu H J, Tang Y, Yang P Y. Lab Chip, 2006, 6: 534-539
[51] Liu Y, Wang H T, Lu Q P, Qu H Y, Liu B H, Yang P Y. Lab Chip, 2010, 6: 2887-2893
[52] Jang E, Son K J, Kim B, Koh W G. Analyst, 2010, 135: 2871-2878
[53] Ikemoto H, Chi Q J, Ulstrup J. J. Phys. Chem., 2010, 114: 16174-16180
[54] Shui W Q, Fan J, Yang P Y, Liu C L, Zhai J J, Lei J, Yan Y, Zhao D Y, Chen X. Anal. Chem., 2006, 78: 4811-4819
[55] Kataoka S, Takeuchi Y, Harada A, Yamada M, Endo A. Green Chem., 2010, 12: 331-337
[56] Cosford R J O, Kuhr W G. Anal. Chem., 1996, 68: 2164-2169
[57] Licklider L, Kuhr W G. Anal. Chem., 1998, 70: 1902-1908
[58] Peterson D S, Rohr T, Svec F, Fréchet J M J. J. Proteome Res., 2002, 1: 563-568
[59] Peterson D S, Rohr T, Svec F, Fréchet J M J. Anal. Chem., 2003, 75: 5328-5335
[60] Liu Y, Xue Y, Ji J, Chen X, Kong J L, Yang P Y, Girault H H, Liu B H. Mol. Cel. Proteomics, 2007, 6: 1428-1436
[61] Ma J F, Liu J X, Sun L L, Gao L, Liang Z, Zhang L H, Zhang Y K. Anal. Chem., 2009, 81: 6534-6540
[62] Yuan H M, Zhang L H, Hou C Y, Zhu G J, Tao D Y, Liang Z, Zhang Y K. Anal. Chem., 2009, 81: 8708-8714
[63] Qu Y Y, Xia S M, Yuan H M, Wu Q, Li M, Zou L J, Zhang L H, Liang Z, Zhang Y K. Anal. Chem., 2011, 83: 7457-7463
[64] Yan X Y, Gilman S D. Electrophoresis, 2010, 31: 346-354
[65] Berne C, Betancor L, Luckarift H R, Spain J C. Biomacromolecules, 2006, 7: 2631-2636
[66] Hodgson R J, Besanger T R, Brook M A, Brennan J D. Anal. Chem., 2005, 77: 7512-7519
[67] Mason B P, Price K E, Steinbacher J L, Bogdan A R, McQuade T D. Chem. Rev., 2007, 107: 2300-2318
[68] Kundu S, Bhangale A S, Wallace W E, Flynn K M, Guttman C M, Gross R A, Beers K L. J. Am. Chem. Soc., 2011, 133: 6006-6011
[69] Pohar A, Plazl I, Plazl P Z. Lab Chip, 2009, 9: 3385-3390
[70] Du L H, Luo X P. RSC Advances, 2012, 2: 2663-2665
[71] Wang C, Li S J, Wu Z Q, Xu J J, Chen H Y, Xia X H. Lab Chip, 2010, 10: 639-646
[72] Jiang H H, Zou H F, Wang H L, Ni J Y, Zhang Q, Zhang Y K. J. Chromatogr. A, 2000, 1903: 77-84
[73] Xu S Y, Pan C S, Hu L G, Zhang Y, Guo Z, Li X. Electrophoresis, 2004, 25: 3669-3676
[74] Schoffelen S, van Hest J C M. Soft Matter, 2012, 8: 1736-1746
[75] Yang L, Shi J, Chen C J, Wang S M, Zhu L D, Xie W L, Guo L P. Electrophoresis, 2009, 30: 3527-3533

[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[5] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[6] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[7] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[8] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[9] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[10] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[11] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[12] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[13] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.
[14] Wen Zhou, Xin Zhang, Hongpeng Ma, Jie Xu, Bin Guo, Panxin Li. Chemical and Physical Mechanism and Method of Preparation of Thermoplastic Starch [J]. Progress in Chemistry, 2021, 33(11): 1972-1982.
[15] Runtian Wang, Chunli Liu, Zhenbin Chen. Imprinted Composite Membranes [J]. Progress in Chemistry, 2020, 32(7): 989-1002.