中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (07): 1229-1236 DOI: 10.7536/PC121149 Previous Articles   

• Review •

Clean Fuel Production Through High Temperature Co-Electrolysis of H2O and CO2

Wang Zhen, Yu Bo*, Zhang Wenqiang, Chen Jing, Xu Jingming   

  1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
  • Received: Revised: Online: Published:
PDF ( 1002 ) Cited
Export

EndNote

Ris

BibTeX

High temperature co-electrolysis (HTCE) technology using solid oxide electrolysis cell (SOEC) is a promising method for the production of clean fuels. Also, it is a novel path of CO2 neutral cycle for utilizing CO2 and thus reducing CO2 emissions due to the generation and use of synthetic liquid fuels for the existing transportation infrastructure. It can make use of renewable energy or nuclear energy to split H2O and CO2 in SOEC system to produce synthesis gas (H2+CO), which is raw materials of synthetic hydrocarbon fuels. In this paper, the basic principle, the advantages of co-electrolysis of H2O and CO2 via SOEC for clean fuel production, the key technologies and challenges are described in detail. The main advantages of this technique lie in the following aspects:It can provide a carbon neutral means of producing syngas while consuming CO2;It can obtain very high efficiency when coupled with renewable energies or advanced nuclear reactors; It has high flexibility such as reversible operation, modular, scalable process, and so on. And it can also be used as an efficient storage means for fluctuating renewable energy. The current research situation around the world and its application prospects in the field of advanced energy technologies are also discussed. Contents
1 Introduction
2 Technical overview of HTCE
2.1 Principle of HTCE
2.2 Technical features
2.3 Key technologies of HTCE
3 Research status of HTCE
4 Conclusions and outlook

CLC Number: 

[1] Lashof D A, Ahuja D R. Nature, 1990, 344: 529-531
[2] 中华人民共和国国务院(Council of People's Republic of China). 节能减排“十二五”规划(Energy Saving of 12th Five-Year Plan), 2012, NO. 40. . http: //www.gov.cn/zwgk/2012-08/21/content_2207867.htm.
[3] Mimura T, Simayoshi H, Suda T, Iijima M, Mituoka S. Energy Conversion and Management, 1997, 38: S57-S62
[4] Aresta M, Dibenedetto A. Dalton Transactions, 2007, (28): 2975-2992
[5] Shinnar R. Technology in Society, 2003, 25(4): 455-476
[6] Simbeck D R. Energy, 2004, 29(9/10): 1633-1641
[7] Larson E D, Tingjin R. Energy for Sustainable Development, 2003, 7(4): 79-102
[8] Sudiro M, Bertucco A. Energy, 2009, 34(12): 2206-2214
[9] Mogensen M. ECS Transactions, 2012, 41(33): 3-11
[10] Xie Y Y, Xue X J. Solid State Ionics, 2012, 224: 64-73
[11] Sun X, Chen M, Hjalmarsson P, Ebbesen S D, Jensen S H, Mogensen M, Hendriksen P V. ECS Transactions, 2012, 41(33): 77-85
[12] Becker W L, Braun R J, Penev M, Melaina M. Energy, 2012, 47(1): 99-115
[13] Sridhar K R, Vaniman B T. Solid State Ionics, 1997, 93(3/4): 321-328
[14] Guan J, Doshi R, Lear G, Montgomery K, Ong E, Minh N. Journal of the American Ceramic Society, 2002, 85(11): 2651-2654
[15] Cullingford H S. US 5005787, 1991
[16] Jensen S H, Larsen P H, Mogensen M. International Journal of Hydrogen Energy, 2007, 32(15): 3253-3257
[17] Stoots C M, O'Brien J, Herring S, Lessing P, Hawkes G, Hartvigsen J. Syngas Generation from Co-Electrolysis (Syntrolysis). . https: //inlportal.inl.gov/portal/server.pt?open=514&objID=1269&mode=2&featurestory=DA_62004
[18] Schanke D, Bergene E, Holmen A. US 6211255 B1, 2001
[19] Hartvigsen J, Elangovan S, Frost L, Nickens A, Stoots C M, O'Brien J E, Herring J S. ECS Transactions, 2008, 12(1): 625-637
[20] Ciszkowski N A, Blake D R. Geophysical Research Letters, 2001, 28(7): 1235-1238
[21] Ebbesen S D, Graves C, Mogensen M. International Journal of Green Energy, 2009, 6(6): 646-660
[22] Abuadala A, Dincer I. International Journal of Hydrogen Energy, 2011, 36(20): 12780-12793
[23] Stoots C M, O'Brien J E, Herring J S, Hartvigsen J J. Journal of Fuel Cell Science and Technology, 2009, 6: art. no. 011014
[24] Fu Q, Mabilat C, Zahid M, Brisse A, Gautier L. Energy & Environmental Science, 2010, 3(10): 1382-1397
[25] Iora P, Chiesa P. Journal of Power Sources, 2009, 190(2): 408-416
[26] Marina O A, Pederson L R, Williams M C, Coffey G W, Meinhardt K D, Nguyen C D, Thomsen E C. Journal of the Electrochemical Society, 2007, 154(5): B452-B459
[27] Forsberg C, Kazimi M. Fourth OECD-NEA Information Exchange Meeting on the Nuclear Production of Hydrogen, MIT-NES-TR-010, 2009
[28] Evans A, Strezov V, Evans T J. Renewable and Sustainable Energy Reviews, 2012, 16(6): 4141-4147
[29] Elder R, Allen R. Progress in Nuclear Energy, 2009, 51(3): 500-525
[30] Schulz H. Applied Catalysis A: General, 1999, 186(1/2): 3-12
[31] Menzler N H, Tietz F, Uhlenbruck S, Buchkremer H P, St O Ver D. Journal of Materials Science, 2010, 45(12): 3109-3135
[32] 陈建颖(Chen J Y), 曾凡蓉(Zen F R), 王绍荣(Wang S R), 陈玮(Chen W), 郑学斌(Zhen X B). 化学进展(Progress in Chemistry), 2011, 23(2): 463-469
[33] Doenitz W, Dietrich G, Erdle E, Streicher R. International Journal of Hydrogen Energy, 1988, 13(5): 283-287
[34] Nguyen Q M, Takahashi T. Science and Technology of Ceramic Fuel Cells. New York: Elsevier, 1995
[35] Isenberg A O. Solid State Ionics, 1981, 3: 431-437
[36] Marina O A, Pederson L R, Williams M C, Coffey G W, Meinhardt K D, Nguyen C D, Thomsen E C. Journal of the Electrochemical Society, 2007, 154(5): B452-B459
[37] Tao G, Sridhar K R, Chan C L. Solid State Ionics, 2004, 175(1): 621-624
[38] Stoots C, O'Brien J, Hartvigsen J. International Journal of Hydrogen Energy, 2009, 34(9): 4208-4215
[39] O'Brien J E, Mckellar M G, Stoots C M, Herring J S, Hawkes G L. International Journal of Hydrogen Energy, 2009, 34(9): 4216-4226
[40] Zhan Z, Kobsiriphat W, Wilson J R, Pillai M, Kim I, Barnett S A. Energy & Fuels, 2009, 23(6): 3089-3096
[41] Jensen S H, Sun X, Ebbesen S D, Knibbe R, Mogensen M. International Journal of Hydrogen Energy, 2010, 35(18): 9544-9549
[42] Ebbesen S D, Mogensen M. Journal of Power Sources, 2009, 193(1): 349-358
[43] Shiratori Y, Oshima T, Sasaki K. International Journal of Hydrogen Energy, 2008, 33(21): 6316-6321
[44] Graves C, Ebbesen S D, Mogensen M, Lackner K S. Renewable and Sustainable Energy Reviews, 2011, 15(1): 1-23
[45] Graves C, Ebbesen S D, Mogensen M. Solid State Ionics, 2011, 192(1): 398-403
[46] Xie K, Zhang Y, Meng G, Irvine J T S. Energy & Environmental Science, 2011, 4(6): 2218-2222
[47] Zhan Z, Zhao L. Journal of Power Sources, 2010, 195(21): 7250-7254
[48] Kim-Lohsoontorn P, Bae J. Journal of Power Sources, 2011, 196(17): 7161-7168
[49] Kim-Lohsoontorn P, Kim Y, Laosiripojana N, Bae J. International Journal of Hydrogen Energy, 2011, 36(16): 9420-9427
[50] Kim-Lohsoontorn P, Laosiripojana N, Bae J. Current Applied Physics, 2011, 11(1): S223-S228
[51] 张文强(Zhang W Q), 于波(Yu B), 陈靖(Chen J), 徐景明(Xu J M). 化学进展(Progress in Chemistry), 2008, 20(5): 778-787

[1] Cao Tianyu, Shi Yixiang, Cai Ningsheng. Electrochemical Reduction of NOx with Solid Oxide Electrolysis Cell [J]. Progress in Chemistry, 2013, 25(10): 1648-1655.
[2] Zhou Yaping,Feng Kui,Sun Yan,Zhou Li**. A Brief Review on the Study of Hydrogen Storage in Terms of Carbon Nanotubes [J]. Progress in Chemistry, 2003, 15(05): 345-.