中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (07): 1219-1228 DOI: 10.7536/PC121143 Previous Articles   Next Articles

• Review •

Iron Oxide Catalyzed Fenton-Like Reaction

Feng Yong, Wu Deli*, Ma Luming   

  1. State Key Laboratroy of Pollution Control and Resource Reused, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
  • Received: Revised: Online: Published:
PDF ( 1863 ) Cited
Export

EndNote

Ris

BibTeX

Advanced oxidation processes (AOPs) have attracted much attention in the field of water or wastewater treatment. As one of the most investigated AOPs, Fenton reagents have notably advantages of convenient operation, mild condition and high performance of degradation. Iron oxide catalyzed Fenton-like reaction, which can be operated effectively in wide range of pH values with convenient catalyst separation and reutilization, has been intensively investigated as one of the most promising developments of Fenton-like reaction during the past two decades. However, when compared with traditional Fenton reagents, these iron oxides initiated Fenton-like processes often encounter much more complicated reaction steps. The main mechanisms are reviewed, including radical mechanism, oxygen vacancies mechanism and high-valent iron species mechanism. The rate of Fe(Ⅱ) generation or Fe(Ⅲ) reduction in pure iron oxides is greatly limited and the circulation of Fe(Ⅲ)/Fe(Ⅱ) has demonstrated to be the rate-controlling steps of Fenton-like reaction. In order to accelerate this limiting step and improve the reactivity of Fenton-like reaction, modified catalysts including multivalent iron mixtures and transition metal doped iron oxides are developed. Before describing the catalytic performance, effects of modification on the morphology, structure and element composition of iron oxides are examined profoundly. Results show that the speciation of iron, the specific surface area of catalysts and the electron transfer between H2O2 and iron oxide are all playing an important role in the reactivity of Fenton-like reaction. The future development and investigations of heterogeneous catalysts are also discussed. Contents
1 Introduction
2 Mechanism and kinetics for the Fenton-like reaction catalyzed by iron oxide
2.1 Radical mechanism
2.2 Active site mechanism
2.3 Oxygen vacancies mechanism
2.4 High-valent iron species mechanism
3 Production or regeneration of Fe(Ⅱ)surf-the rate-determining step
4 Modification of iron oxides
4.1 Multivalent iron mixture
4.2 Transition metal doped iron oxide
5 Conclusion and outlook

CLC Number: 

[1] Bautista P, Mohedano A F, Casas J A, Zazo J A, Rodriguez J J. Journal of Chemical Technology and Biotechnology, 2008, 83(10): 1323-1338
[2] Titus M P, Molina V G, Banos M A, Gimenez J, Esplugas S. Applied Catalysis B: Environmental, 2004, 47(4): 219-256
[3] Neyens E, Baeyens J. Journal of Hazardous Materials, 2003, 98(1/3): 33-50
[4] Pignatello J, Oliveros E, MacKay A. Critical Reviews in Environmental Science and Technology, 2006, 36(1): 1-84
[5] 陈景文(Chen J W), 全燮(Quan X). 环境化学(Environmental Chemistry). 大连: 大连理工大学出版社(Dalian: Dalian Univeristy of Technology Press), 2009. 360-361
[6] Hanna K, Kone T, Medjahdi G. Catalysis Communications, 2008, 9(5): 955-959
[7] Strli M, Kolar J, elih V S, Ko ar D, Pihlar B. Acta Chimica Slovenica, 2003, 50(4): 619-632
[8] Ensing B, Buda F, Baerends E J. Journal of Physical Chemistry A, 2003, 107: 5722-5731
[9] Barreiro J C, Capelato M D, Martin L, Bruun Hansen H C. Water Research, 2007, 41(1): 55-62
[10] Xue X, Hanna K, Abdelmoula M, Deng N. Applied Catalysis B: Environmental, 2009, 89(3/4): 432-440
[11] Matta R, Hanna K, Chiron S. Environmental Science and Technology, 2007, 385(1/3): 242-51
[12] Andreozzi R, Caprio V. Water Research, 2002, 36(11): 2761-2768
[13] 冯勇(Feng Y), 吴德礼(Wu D L), 马鲁铭(Ma L M). 中国环境科学(China Environmental Science), 2012, 32(6): 1011-1017
[14] Che, H, Bae S, Lee W. Journal of Hazardous Materials, 2011, 185(2/3): 1355-1361
[15] Ramirez J H, Maldonad F, Cadenas A F, Castilla C, Costa C A, Madeira L M. Applied Catalysis B: Environmental, 2007, 75(3/4): 312-323
[16] Robles P A, Silva K A, Sousa E M B, Gusevskaya E V. Journal of Catalysis, 2009, 265(1): 72-79
[17] Feng J, Hu X, Yue P. Water Research, 2006, 40(4): 641-646
[18] Lin S S, Gurol M D. Environmental Science and Technology, 1998, 32(10): 1417-1423
[19] Kwan W P, Voelker B M. Environmental Science and Technology, 2002, 36(7): 1467-1476
[20] Gallard H, Laat J D E. Water Research, 2000, 34(12): 3107-3116
[21] Gordon T R, Marsh A L. Catalysis Letters, 2009, 132(3/4): 349-354
[22] Lee Y N, Lago R M, Fierro J L G, González J. Applied Catalysis A: General, 2001, 215(1/2): 245-256
[23] Costa R C, Lelis M F, Oliveira L C, Fabris J D, Ardisson J D, Rios R R, Silva C N, Lago R M. Journal of Hazardous Materials, 2006, 129(1/3): 171-178
[24] Oliveira L, Ramalho T C, Souza E F, Goncalves M, Oliveira D, Pereira M C, Fabris J. Applied Catalysis B: Environmental, 2008, 83(3/4): 169-176
[25] Goldstein S, Meyerstein D, Czapski G. Free Radical Biology and Medicine, 1993, 15(4): 435-445
[26] July. Accounts of chemical research, 1999, 32(7): 547-550
[27] Bossmann S H, Oliveros E, Goeb, Siegwart S, Dahlen E P, Pavayan L, Straub M, Wörner M, Braun A M. Journal of Physical Chemistry A, 1998, 102(28): 5542-5550
[28] Li F, England J, Que L. Journal of the American Chemical Society, 2010, 132(7): 2134-2135
[29] Buda F, Ensing B, Gribnau M C M, Baerends E J. Chemistry-A European Journal, 2001, 7(13): 2775-2783
[30] Kremer M L. Physical Chemistry Chemical Physics, 1999, 1: 3595-3605
[31] Keenan C R. Doctoral Dissertation of University of California, Berkeley, 2009
[32] Jacobsen F, Holcman J, Sehested K. International Journal of Chemical Kinetics, 1998, 30: 215-221
[33] Luo W, Zhu L, Wang N, Tang H, Cao M, She Y. Environmental Science and Technology, 2010, 44(5): 1786-1791
[34] Wang Z, Ma W, Chen C, Zhao J. Journal of Hazardous Materials, 2009, 168(2/3): 1246-1252
[35] He J, Ma W, He J, Zhao J, Yu J C. Applied Catalysis B: Environmental, 2002, 39(3): 211-220
[36] Tsai T T, Kao C M. Journal of Hazardous Materials, 2009, 170: 466-472
[37] Matta R, Hanna K, Kone T, Chiron S. Chemical Engineering Journal, 2008, 144(3): 453-458
[38] Kwan W P, Voelker B M. Environmental Science and Technology, 2003, 37(6): 1150-1158
[39] Chen F, Ma W, He J, Zhao J. The Journal of Physical Chemistry A, 2002, 106(41): 9485-9490
[40] Chen L, Ma J, Li X, Zhang J, Fang J, Guan Y, Xie P. Environmental Science and Technology, 2011, 45(9): 3925-3930
[41] Moura F, Araujo M, Costa R, Fabris J, Ardisson J, Macedo W, Lago R. Chemosphere, 2005, 60(8): 1118-1123
[42] Moura F, Oliveira G, Araujo M, Ardisson J, Macedo W, Lago R. Applied Catalysis A: General, 2006, 307(2): 195-204
[43] Costa R C C, Moura F C C, Ardisson J D, Fabris J D, Lago R M. Applied Catalysis B: Environmental, 2008, 83(1/2): 131-139
[44] Teel A L, Warberg C R, Atkinson D A, Watts R J. Water Research, 2001, 35(4): 977-984
[45] Xue X, Hanna K, Despas C, Wu F, Deng N. Journal of Molecular Catalysis A: Chemical, 2009, 311(1/2): 29-35
[46] Cornell R M, Shwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses. NY: Wiley VCH, 2003
[47] Costa R C C, Lelis M F F, Oliveira L C A, Fabris J D, Ardisson J D, Rios R V A, Silva C N, Lago R M. Catalysis Communications, 2003, 4(10): 525-529
[48] Magalhães F, Pereira M C, Botrel S E C, Fabris J D, Macedo W A, Mendona R, Lago R M, Oliveira L A. Applied Catalysis A: General, 2007, 332(1): 115-123
[49] Oliveira L C A, Fabris J D, Mussel W N, Lago R M. Applied Catalysis A: General, 2004, 259(2): 253-259
[50] Silva A C, Oliveira D Q L, Oliveira L C A, Anastácio A S, Ramalho T C, Lopes J H, Carvalho H W, Torres C E R. Applied Catalysis A: General, 2009, 357(1): 79-84
[51] Menini L, Pereira M, Parreira L, Fabris J, Gusevskaya E. Journal of Catalysis, 2008, 254(2): 355-364
[52] Menini L, Silva M J, Lelis M F F, Fabris J D, Lago R M, Gusevskaya E V. Applied Catalysis A: General, 2004, 269(1/2): 117-121
[53] Deng J, Jiang J, Zhang Y, Lin X, Du C, Xiong Y. Applied Catalysis B: Environmental, 2008, 84(3/4): 468-473
[54] Nie Y. Applied Catalysis B: Environmental, 2009, 87(1/2): 30-36
[55] Souza W F, Guimarães I R, Oliveira L C, Giroto A S, Guerreiro M C, Silva C L T. Applied Catalysis A: General, 2010, 381: 36-41
[56] Oliveira L C A, Gonalves M, Guerreiro M C, Ramalho T C, Fabris J D, Pereira M C, Sapag K. Applied Catalysis A: General, 2007, 316(1): 117-124
[57] Lam F L Y, Yip A C K, Hu X. Industrial and Engineering Chemistry Research, 2007, 46(10): 3328-3333
[58] Liochev S, Ivancheva E. Free Radical Research, 1991, 14(5/6): 335-342
[59] Yang S, He H, Wu D, Chen D, Liang X, Qin Z, Fan M, Zhu J, Yuan P. Applied Catalysis B: Environmental, 2009, 89(3/4): 527-535
[60] Miller C M, Valentine R L, Roehl M E, Alvarez P J J. Water Research, 1999, 33(12): 2805-2816

[1] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[2] Jingjing Li, Hongji Li, Qiang Huang, Zhe Chen. Study on the Mechanism of the Influence of Doping on the Properties of Cathode Materials of Sodium Ion Batteries [J]. Progress in Chemistry, 2022, 34(4): 857-869.
[3] Meng Pengfei, Zhang Xiaorong, Liao Shijun, Deng Yijie. Enhancing the Performance of Atomically Dispersed Carbon-Based Catalysts Through Metallic/Nonmetallic Elements Co-Doping Towards Oxygen Reduction [J]. Progress in Chemistry, 2022, 34(10): 2190-2201.
[4] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[5] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[6] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[7] Xiujun Cao, Lei Zhang, Yuanxin Zhu, Xin Zhang, Chaonan Lv, Changmin Hou. Design and Synthesis of Sillenite-Based Micro/Nanomaterials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2020, 32(2/3): 262-273.
[8] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[9] Xiaohui Ma, Liqun Yang, Shijian Zheng, Qilin Dai, Cong Chen, Hongwei Song. All-Inorganic Perovskite Solar Cells: Status and Future [J]. Progress in Chemistry, 2020, 32(10): 1608-1632.
[10] Yijia Shao, Bin Huang, Quanbing Liu, Shijun Liao. Preparation and Modification of Ni-Co-Mn Ternary Cathode Materials [J]. Progress in Chemistry, 2018, 30(4): 410-419.
[11] Rong Yang, Lan Li, Bing Ren, Dan Chen, Liping Chen, Yinglin Yan. Doped-Graphene in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2018, 30(11): 1681-1691.
[12] Min Li, Yanli Wang, Xiaoyan Wu, Lei Duan, Chunming Zhang, Dannong He. The Mechanism of Ion-Doping, Surface Coating, Surface Oxygen Vacancy Modification and Their Joint Mechanism in Lithium-Rich Material for Li-Ion Battery [J]. Progress in Chemistry, 2017, 29(12): 1526-1536.
[13] Chen Xiaoyan, Sun Yiran, Yu Fei, Chen Junhong, Ma Jie. The Catalytic Properties for Reduction of Graphene-Based Aerogels and Their Applications [J]. Progress in Chemistry, 2015, 27(11): 1542-1554.
[14] Wang Gang, Chen Jinwei, Zhu Shifu, Zhang Jie, Liu Xiaojiang, Wang Ruilin. Activation of Carbon Electrodes for All-Vanadium Redox Flow Battery [J]. Progress in Chemistry, 2015, 27(10): 1343-1355.
[15] Huang Zhao, Wang Dan, Zhang Chunming, He Dannong. Effects of Different Doping Sites on the Structure and Performance of Li4Ti5O12 Material [J]. Progress in Chemistry, 2014, 26(12): 1914-1923.
Viewed
Full text


Abstract

Iron Oxide Catalyzed Fenton-Like Reaction