中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (07): 1122-1130 DOI: 10.7536/PC121142 Previous Articles   Next Articles

Hydrogen Storage Nanoalloys

Li Xue1, Zhang Yifang1, Qi Weihong1,2,3*, Cao Xiaowu1, Wang Yuan1, Li Haohua1   

  1. 1. School of Materials Science and Engineering, Central South University, Changsha, 410083, China;
    2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083;
    3. Key Laboratory of Non-Ferrous Materials Science and Engineering, Ministry of Education, Changsha 410083, China
  • Received: Revised: Online: Published:
PDF ( 1861 ) Cited
Export

EndNote

Ris

BibTeX

Hydrogen energy, as a new kind of clean energy, is getting increasingly important in the energy crisis in recent decades. Nanoalloys show great foreground because of their extraordinary properties in different fields of subjects. The hydrogen storage nanoalloys have been regarded as one of the most important hydrogen storage materials. In this review, we introduce the principle of the hydrogen storage nanoalloys and properties of different kinds of hydrogen storage materials, which offer guidance from the point of view of thermodynamics and kinetics. Three methods to improve the hydrogen storage are discussed, namely alloying, non-crystallizing, and nanocrystallization. Then several preparation methods of hydrogen storage nanoalloys are reviewed with brief introduction of their advantages and disadvantages, where we pay more attention to the three methods, i.e., the mechanical disintegration/alloying, gaseous coacervation and cluster beam deposition. Furthermore, the factors affecting the properties of hydrogen storage alloy, such as structure, component and size, are discussed. In the end, we prospect the future of hydrogen storage materials. Contents
1 Introduction
2 Principle of hydrogen storage nanoalloys
3 Properties of different kinds of hydrogen storage materials
4 Methods to improve the hydrogen storage
4.1 Alloying
4.2 Non-crystallizing
4.3 Nanocrystallization
5 Preparation methods
5.1 Mechanical disintegration/alloying method
5.2 Gaseous coacervation method
5.3 Cluster beam deposition method
5.4 Preparation of composite alloys
5.5 Other methods
6 Factors affecting hydrogen storage
6.1 Structure
6.2 Component
7 Conclusions and outlook

CLC Number: 

[1] Luo W, Ronnebro E. Journal of Alloys and Compounds, 2005, 404/406: 392-395
[2] 朱相丽(Zhu X L). 新材料产业(Advanced Materials Industry), 2007, (3): 54-60
[3] 卢国俭(Lu G J), 周仕学(Zhou S X), 姜瑶遥(Jiang Y Y), 雷桂芹(Lei G Q), 吴峻青(Wu J Q), 杨敏建(Yang M J). 材料导报( Materials Review), 2007, 21(3): 86-89
[4] 叶素云(Ye S Y), 朱敏(Zhu M). 自然科学进展(Progress in Natural Science), 2007, 17(8): 1105-1113
[5] Züttel A. Materials Today, 2003, 6(9): 24-33
[6] Schlapbach L, Züttel A. Nature, 2001, 414: 353-358
[7] 熊义富(Xiong Y F), 敬文勇(Jing W Y), 张义涛(Zhang Y T). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2007, 36(1): 138-140
[8] 王宏(Wang H), 刘祖岩(Liu Z Y). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2004, 33(3): 239-241
[9] Schur D V, Zaginaichenko S Y, Matysina Z A, Smityukh I, Pishuk V K. Journal of Alloys And Compounds, 2002, 330: 70-75
[10] Alekseeva O, Padurets L, Parshin P, Shilov A. Russian Journal of Inorganic Chemistry, 2007, 52(1): 29-33
[11] Guo J, Wei W L, Ma S Y. Journal of Alloys and Compounds, 2004, 372(1/2): 136-140
[12] Grochala W, Edwards P P. Chemical Reviews, 2004, 104: 1283-1315
[13] Aguey-Zinsou K F, Ares-Fernández J R. Energy & Environmental Science, 2010, (3): 526-543
[14] Hamilton C W, Baker R T, Staubitzc A, Manners I. Chemical Society Reviews, 2009, 38: 279-293
[15] Dompablo M, Ceder G. Journal of Alloys and Compounds, 2004, 364: 6-12
[16] Orimo S, Nakamori Y, Jennifer R E. Chemical Reviews, 2007, 107: 41l1-4132
[17] Au M, Spencer W, Jurgensen A, Zeigler C. Journal of Alloys and Compounds, 2008, 462(1): 303-309
[18] Nakamori Y, Miwa K, Ninomiya A, Li H W, Ohba N, Towata S, Züttel A, Orimo S. Physical Reviews B, 2006, 74(4): art. no. 045126
[19] Li Y, Zhou G, Fang F, Yu X, Zhang Q, Ouyang L, Zhu M, Sun D. Acta Materialia, 2011, 59(4): 1829-l838
[20] Vajo J J, Mertens F, Ahn C C, Bowman R C, Fultz B. Journal of Physical Chemistry C, 2004, 108(37): 13977-13983
[21] 邹勇进(Zou Y J), 向翠丽(Xiang C L), 邱树君(Qiu S J), 诸海亮(Zhu H L), 孙立贤(Sun L X), 徐芬(Xu F). 化学进展(Progress in Chemistry), 2013, 25(1): 115-121
[22] 任建伟(Ren J W), 廖世军(Liao S J), 刘军民(Liu J M). 科学通报(Chinese Science Bulletin), 2006, 51(21): 2481-2484
[23] 任建伟(Ren J W), 廖世军(Liao S J), 刘军民(Liu J M). 科学通报(Chinese Science Bulletin), 2007, 52(14): 1620-1624
[24] Koyabashi H, Yamauchi M, Kitagava H, Kubota Y, Kato K, Takata M. Journal of the American Chemical Society, 2010, 132(16): 55-76
[25] Ding Y, Fan F, Tian Z, Wang Z L. Journal of the American Chemical Society, 2010, 132 (35): 12480-12486
[26] Lebon A, García-Fuente A, Vega A, Aguilera-Granja F. Physical Reviews B, 2011, 83: art. no. 125427
[27] 贾志华(Jia Z H), 马光(Ma G), 李银蛾(Li Y E), 王轶(Wang Y). 钛工业进展(Titanium Industry Progress), 2005, 22( 6) : 28-33
[28] 肖学章(Xiao X Z), 陈立新(Chen L X), 刘广成(Liu G C), 王爽(Wang S), 李寿权(Li S Q), 王新华(Wang X H), 陈长聘(Chen C P). 西安交通大学学报(Journal of Xi’an Jiaotong University), 2007, 41(11): 1368-1372
[29] Schleich D M, Walter B. Nanostructured Materials, 1997, 8(5): 579-586
[30] Orimo S, Fuji H. Intermetallics, 1998, 6(3): 185-192
[31] Jung C B, Kim J H, Lee K S. Nanostructured Materials, 1997, 8(8): 1093-1104
[32] Bryden K J, Ying J Y. Journal of Membrane Science, 2002, 203(1/2): 29-42
[33] Tanaka K, Kanda Y, Furuhashi M, Saito K, Kuroda K, Saka H. Journal of Alloys and Compounds, 1999, 293: 521-525
[34] 韦建军(Wei J J), 王朝阳(Wang C Y), 唐永建(Tang Y J), 吴卫东(Wu W D), 吴栋(Wu D). 原子能科学技术(Atomic Energy Science and Technology), 2008, 42(9): 790-793
[35] 马建丽(Ma J L), 王艳(Wang Y), 陶占良(Tao Z J), 陈军(Chen J). 高等学校化学学报(Chemical Journal of Chinese Universities ), 2012, 33(3): 536-540
[36] 彭成红(Peng C H), 欧阳柳章(Ouyang L Z), 朱敏(Zhu M). 机械工程材料(Materials for Mechanical Engineering), 2010, 34(9): 82-86
[37] Lei Y Q, Wu Y M, Yang Q M, Wu J, Wang Q D. Zeitschrift für Physikalische Chemie, 1994, 183: 379-384
[38] Yang Q M, Lei Y Q, Chen C P, Wu J, Wang Q D, Lu G L, Chen L S. Zeitschrift für Physikalische Chemie, 1994, 183: 141-147
[39] Shu K Y, Lei Y Q, Yang X G, Zhang S K, Chen L S, Lu G L, Wang Q D. Journal of Alloys and Compounds, 2003, 349: 237-241
[40] Aoyagi H, Aoki K, Masumoto T. Journal of Alloys and Compounds, 1995, 231: 804-809
[41] Hout J, Akiba E, Takada T. Journal of Alloys and Compounds, 1995, 231: 815-819
[42] Iwakura C, Nohara S, Inoue H, Fukumoto Y. Chemical Communications, 1996, (15): 1831-1832
[43] Orimo S, Fuji H. Intermetallics, 1998, 6(3): 185-192
[44] 蒋利军(Jiang L J), 李谦(Li Q), 林勤(Lin Q), 周国治(Zhou G Z), 詹锋(Zhan F), 郑强(Zheng Q), 杜军(Du J), 尉秀英(Wei X Y), 李法兵(Li F B), 王树茂(Wang S M). CN 03149652.0, 2003
[45] Gleiter H. Progress in Material Science, 1989, 33: 223-315
[46] Barborini E, Piseri P, Mutti S, Milani P, Biasioli F, Iannotta S, Gialanella S. Nanostructured Materials, 1998, 6 (10): 1023-1031
[47] Zaluski L, Zaluska A, Tessier P, Strm-Olsen J O, Schulz R. Journal of Alloys and Compounds 1995, 217: 295-300
[48] 陈伟(Chen W), 李慎兰(Li S L), 罗刚(Luo G). 原子能科学技术(Atomic Energy Science and Technology), 2010, 44(8): 920-925
[49] 周仕学(Zhou S X), 杨敏建(Yang M J), 马怀营(Ma H Y), 张同环(Zhang T H), 张光伟(Zhang G W), 山东科技大学学报(Journal of Shandong University of Science and Technology), 2009, 28(5): 54-80
[50] 郝春成(Hao C C), 张志琨(Zhang Z K), 崔作林(Cui Z L). 青岛化工学院学报(Journal of Qingdao Institute of Chemical Technology), 1995, 17(3): 301-302
[51] 许炜(Xu W), 陶占良(Tao Z L), 陈军(Chen J). 化学进展(Progress in Chemistry), 2006, 18(2/3): 200-210
[52] Vons V A, Leegwater H, Legerstee W J, Eijt S W H, Schmidt-Ott A. International Journal of Hydrogen Energy, 2010, 35: 5479-5489
[53] Rather S, Zacharia R, Hwang S W, Naik M, Nahm K S. Chemical Physics Letters, 2007, 438: 78-84
[54] Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M. Journal of the American Chemical Society, 2008, 130: 1818-1819
[55] 周怀营(Zhou H Y), 倪成员(Ni C Y), 王仲民(Wang Z M), 颜瑞(Yan R), 王殿辉(Wang D H). 桂林电子科技大学学报(Journal of Guilin University of Electronic Technology), 2010, 30(5): 363-373
[56] Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M. Journal of the American Chemical Society, 2010, 132: 5576-5577
[57] Kobayashi H, Yamauchi M, Ikeda R, Kitagewa H. The Royal Society of Chemistry, 2009, 4806-4808
[58] Orimo S, Fujii H. International Journal of Hydrogen Energy, 1999, 24(9): 933-937
[59] Yang J, Ciureanu M, Roberge R. Journal of Alloys and Compounds, 1999, 287(1/2): 251-255
[60] Kusada K, Yamauchi M, Kobayashi H, Kitagawa H, Kubbota Y. Journal of the American Chemical Societv, 2010, 132(45): 1589-1598
[61] 刘永锋(Liu Y F), 李超(Li C), 高明霞(Gao M X), 潘洪革(Pan H G). 自然杂志(Chinese Journal of Nature), 2011, 1(33): 19-26
[62] Liu C S, An H, Zeng Z. Physical Chemistry Chemical Physics, 2011, 13: 2323-2327

[1] Yin Xie, Liyang Zhang, Peijin Ying, Jiacheng Wang, Kuan Sun, Meng Li. Intensified Field-Effect of Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(9): 1571-1585.
[2] Zhao Ding, Weijie Yang, Kaifu Huo, Leon Shaw. Thermodynamics and Kinetics Tuning of LiBH4 for Hydrogen Storage [J]. Progress in Chemistry, 2021, 33(9): 1586-1597.
[3] Tingting Gu, Jian Gu, Yu Zhang, Hua Ren. Metal Borohydride-Based System for Solid-State Hydrogen Storage [J]. Progress in Chemistry, 2020, 32(5): 665-686.
[4] Lishan Peng, Zidong Wei*. Design and Product Engineering of High-Performance Electrode Catalytic Materials for Water Electrolysis [J]. Progress in Chemistry, 2018, 30(1): 14-28.
[5] Zhao Chong, Xu Fen*, Sun Lixian*, Fan Minghui, Zou Yongjin, Chu Hailiang. Hydrogen Generation by Al-Based Materials Hydrolysis [J]. Progress in Chemistry, 2016, 28(12): 1870-1879.
[6] Li Chao, Fan Meiqiang, Chen Haichao, Chen Da, Tian Guanglei, Shu Kangying. Thermodynamics and Kinetics Modifications on the Li-Mg-N-H Hydrogen Storage System [J]. Progress in Chemistry, 2016, 28(12): 1788-1797.
[7] Wang Cheng, Wang Shubo, Zhang Jianbo, Li Jianqiu, Wang Jianlong, Yang Minggao. The Durability Research on the Proton Exchange Membrane Fuel Cell for Automobile Application [J]. Progress in Chemistry, 2015, 27(4): 424-435.
[8] Wang Cheng, Wang Shubo, Zhang Jianbo, Li Jianqiu, Yang Minggao, Wang Jianlong. The Key Materials and Components for Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2015, 27(2/3): 310-320.
[9] Xu Shujun, Liang Liyun, Li Buyi, Luo Yali, Liu Chengmei, Tan Bien. Research Progress on Microporous Organic Polymers [J]. Progress in Chemistry, 2011, 23(10): 2085-2094.
[10] He Fei, Peng Ranran, Yang Shangfeng. Reversible Solid Oxide Cell with Proton Conducting Electrolyte: Materials and Reaction Machanism [J]. Progress in Chemistry, 2011, 23(0203): 477-486.
[11] Huang Yucheng Li Zhe Kang Guojun Chen Zhaoxu. Theoretical Chemistry and New Energy Sources [J]. Progress in Chemistry, 2009, 21(11): 2271-2284.
[12] Cheng Wang1*,Zongqiang Mao1,Ronghua Chen2,Gehua Wang1,Xiaofeng Xie1. Current Research Status of Small Fuel Cells and Its Application Analysis [J]. Progress in Chemistry, 2006, 18(01): 30-35.
Viewed
Full text


Abstract

Hydrogen Storage Nanoalloys