中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC121135 Previous Articles   Next Articles

• Review •

Bio-Inspired Functional Integration by Self-Assembly and Mineralization of Polysaccharides

Wang Yun, Huang Haibo, Chu Guang, Xu Yan*   

  1. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry,Jilin University, Changchun 130012, China
  • Received: Revised: Online: Published:
PDF ( 1338 ) Cited
Export

EndNote

Ris

BibTeX

Bio-inspired materials strategy seeks inspiration from nature for their use as models in the organization of advanced materials with embedded structural hierarchy. Biominerals are highly sophisticated interfacial materials and have functions integrated by self-assembly and mineralization of biomacromolecules. Polysaccharides, representing approximately three quarters of natural biomass resources, have the richness of structure, chemistry and actuation properties. They play critical roles in the organization and functional integration of biominerals, typical examples including chitin in lobster cuticle and nacre shells. Such materials can provide environmentally compatible solutions to some of the modern technological problems. Representative biominerals including nacre shells, lobster cuticle and diatom frustules, and some pertinent bio-inspired materials with salient structural functions are reviewed. The self-assembly and actuation properties of selected polysaccharides such as cellulose and alginate, and their inspiration to the design of advanced materials are covered. The concept of cooperative assembly of inorganic-polysaccharides interfacial materials is introduced, and representative advancement in bio-inspired functional integration by self-assembly and mineralization of polysaccharides are highlighted. It is hoped that this article will encourage further scientific investigations and invite more insightful view as how bio-inspired functional integration can be best achieved by self-assembly and mineralization of polysaccharides.

CLC Number: 

[1] Vaia R, Baur J. Science, 2008, 319: 420-421
[2] Capadona J R, Shanmuganathan K, Tyler D, Rowan S J, Weder C. Science, 2008, 319: 1370-1374
[3] Sidorenko A, Krupenkin T, Taylor A, Fratzl P, Aizenberg J. Science, 2007, 315: 487-490
[4] Fratzl P, Barth F G. Nature, 2009, 462: 442-448
[5] Munch E, Launey M E, Alsem D H, Saiz E, Tomsia A P, Ritchie R O. Science, 2008, 322: 1516-1520
[6] Bonderer L J, Studart A R, Gauckler L J. Science, 2008, 319: 1069-1073
[7] Fratzl P, Weinkammer R. Prog. Mater. Sci., 2007, 52: 1263-1334
[8] Ortiz C, Boyce M C. Science, 2008, 319: 1053-1054
[9] Dennler G, Scharber M C, Brabec C J. Adv. Mater., 2009, 21: 1323-1338
[10] Meyers M A, Chen P Y, Lin A Y M, Seki Y. Prog. Mater. Sci., 2008, 53: 1-206
[11] Heinemann F, Launspach M, Gries K, Fritz M. Biophysical Chem., 2011, 153: 126-153
[12] Burton W, Cabrera N, Frank F. Philos. Trans. R. Soc. London Ser. A, 1951, 243: 299-358
[13] Cartwright J H E, Checa A, Escribano B, Sainz-D韆z C I. Proceeding of the National Academy of Science of the United State of America, 2009, 106: 10499-10504
[14] Weiner S, Traub W, Parker S B. Phil. Trans. R. Soc. Lond. B, 1984, 304: 425-434
[15] Gummich J. Studiengang Mediendesign, Hochschule Braunschweig/Wolfenb黷tel. 38302 Wolfenb黷tel, Germany, 2012
[16] Cartwright J H E, Checa A G. J. R. Soc. Interface, 2007, 4: 491-504
[17] Wada K. Biomineralization, 1972, 4: 141-159
[18] Schaffer T E, Zanetti C I, Proksch R. Chem. Mater., 1997, 9: 1731-1740
[19] Sanabria H, Swulius M T, Kolodziej S J, Liu J, Waxham M N. J. Struct. Biol., 1992, 109: 116-121
[20] Saito Y, Kumagai H, Wada M, Kuga S. Biomacromolecules, 2002, 3: 407-410
[21] Addadi L, Raz S, Weiner S. Adv. Mater., 2003, 15: 959-970
[22] Gehrke N, Nassif N, Pinna N, Antonietti M, Gupta H S, Cölfen H. Chem. Mater., 2005, 17: 6514-6516
[23] Li X D, Xu Z H, Wang R Z. Nano Lett., 2006, 6: 2301-2304
[24] Li X, Chang W, Chao Y J, Wang R, Chang M. Nano Lett., 2004, 4: 613-617
[25] Li X, Nardi P. Nanotechnology, 2004, 15: 211-217
[26] Eichhorn S J, Scurr D J, Mummery P M, Golshan M, Thompson S P, Cernik R J. J. Mater. Chem., 2005, 15: 947-952
[27] Evans J S. Chem. Rev., 2008, 108: 4455-4462
[28] Jackson D J, McDougall C, Green K M, Simpson F, Wrheide G, Degnan B M. Biophys. J., 2007, 93: 1246-1254
[29] McClure K F, Lee J H, Kemp D S. J. Am. Chem. Soc., 1996, 118: 3082-3090
[30] Bhattacharyya R, Chakrabarti P. J. Mol. Biol., 2003, 331: 925-940
[31] Kentsis A, Mezei M, Gindin T, Osman R. Proteins: Struct. Funct. Bioinf., 2004, 55: 493-501
[32] Levi-Kalisman Y, Falini G, Addadi L, Weiner S. J. Struct. Biol., 2001, 135: 8-17
[33] Lin A, Meyers M A. Mater. Sci. Eng., 2005, 390: 27-41
[34] Belamie E, Davidson P, Giraud-Guille M M. J. Phys. Chem. B, 2004, 108: 14991-15000
[35] Neville A C. Biology of Fibrous Composites: Development beyond the Cell Membrane. UK: Cambridge University Press, 1993
[36] Verkhratsky A, Orkand R K, Kettenmann H. Proc. Roy. Soc. Lond., 1988, 234: 414-440
[37] Smith B L, Schaffer T E, Viani M. Nature, 1999, 399: 761-763
[38] Hutchinson J W. J. Mater. Res., 2001, 16: 2475-2484
[39] Meyers M A, Lin A Y, Chen P Y, Muyco J. J. Mech. Behav. Biomed. Mater., 2008, 1: 76-85
[40] Wang J F, Cheng Q F, Tang Z Y. Chem. Soc. Rev., 2012, 41: 1111-1129
[41] Corni I, Harvey T J, Wharton J A, Stokes K R, Walsh F C, Wood R J. Bioinspir. Biomim., 2012, 7: art. no. 031001
[42] Finnemore A, Cunha P, Shean T, Vignolini S, Guldin S, Oyen M, Steiner U. Nat. Comm., 2012, 3: 1-6
[43] Oaki Y, Imai H. Adv. Funct. Mater., 2005, 15: 1407-1414
[44] Wakahara T, Matsunaga Y, Katayama A, Maeda Y, Kako M, Akasaka T, Okamura M, Kato T, Choe Y K, Kobayashi K, Nagase S, Huange H, Atae M. Chem. Commun., 2003, 2940-2941
[45] Yu S H, Antonietti M, Cölfen H, Hartmann J. Nano Lett., 2003, 3: 379-382
[46] Oaki Y, Imai H. Langmuir, 2005, 21: 863-869
[47] Mayer G. Science, 2005, 310: 1144-1147
[48] Bauermann L P, del Campo A, Bill J, Aldinger F. Chem. Mater., 2006, 18: 2016-2020
[49] Tseng Y H, Lin H Y, Liu M H, Chen Y F, Mou C Y. J. Phys. Chem. C, 2009, 113: 18053-18061
[50] Nikolov S, Fabritius H, Petrov M, Fri醟 M, Lymperakis L, Sachs C, Raabe D, Neugebauer J. Adv. Mater., 2009, 21: 391-400
[51] Dillaman R, Hequembourg S, Gay M. J. Morphology, 2005, 263: 356-374
[52] Romano P, Fabritius H, Raabe D. Acta Biomaterialia, 2007, 3: 301-309
[53] Raabe D, Romano P, Sachs C, Al-Sawalmih A, Brokmeier H G, Yi S B, Servos G, Hartwig H G. J. Cryst. Growth, 2005, 283: 1-7
[54] Bouligand Y. Aspects Ultrastructuraux de la Calcification Chez les Crabes. in: 7鑝e Congr. Internat. Microsc. Électr., Grenoble, France, 1970, 3: 105-106
[55] Weiner S, Addadi L. J. Mater. Chem., 1997, 7: 689-702
[56] Giraud-Guille M M. Curr. Opin. Solid State Mater. Sci., 1998, 3: 221-227
[57] Raabe D, Romanoa P, Sachs C. Mater. Sci. Eng., 2006, 421: 143-153
[58] Comp閞e P, Goffinet G. Tissue Cell, 1987, 19: 839-857
[59] Blackwell J, Weih M A. J. Mol. Biol., 1980, 137: 49-60
[60] Giraud-Guille M M. Tissue Cell, 1984, 16: 75-92
[61] Nikolov S, Fabritius H O, Petrov M, Fri醟 M, Lymperakis L, Sachs C, Raabe D, Neugebauer J. J. Mech. Behav. Biomed., 2011, 4: 129-145
[62] Krauss S, Ornan E M, Zelzer E, Fratzl P, Shahar R. Adv. Mater., 2009, 21: 407-412
[63] Al-Sawalmih A, Li C H, Siegel S, Fabritius H, Yi S B, Raabe D, Fratzl P, Paris O. Adv. Func. Mater., 2008, 18: 3307-3314
[64] Sachs C, Fabritius H, Raabe D. J. Struct. Biol., 2008, 161: 120-132
[65] Rharbi-Kucki E, Sumper M. Appl. Phys. B, 2004, 78: 257-260
[66] Rosi N L, Thaxton C S, Mirkin C A. Angew. Chem. Int. Ed., 2004, 116: 5616-5619
[67] Stefano L D, Rendina I, de Stefano M. Appl. Phys. Lett., 2005, 87: art. no. 233902
[68] Coradin T, Livage J. Mater. Sci. Eng. C, 2005, 25: 201-205
[69] Losic D, Rosengarten G, Mitchell J G. J. Nanosci. Nanotechnol., 2006, 6: 982-989
[70] Smol J P, Stoermer E F. The Diatoms. UK: Cambridge University Press, 1999
[71] Sumper M. Science, 2002, 295: 2430-2433
[72] Losic D, Pillar R J, Dilger T, Mitchell J G, Voelcker N H. J. Porous Mater., 2007, 14: 61-69
[73] Kroger N, Deutzmann R, Bergsdorf C, Sumper M. Proc. Nat. Acad. Sci. U. S. A., 2000, 97: 14133-14138
[74] Cima J, Oliveira M, Wang H R, Sachs E M, Hoiman R. J. Phycol., 2001, 37: 543-554
[75] Higgins M J, Sader J E, Mulvaney P, Wetherbee R. J. Phycol., 2003, 39: 722-734
[76] Gebeshuber I C, Kindt J H, Thompson J B, Delamo Y, Stachelberger H, Brzezinski M A, Stucky G D, Morse D E, Hansma P K. J. Microsc., 2003, 212: 292-299
[77] Brzezinski L M, Hansma P K. J. Microsc., 2003, 202: 518-524
[78] Gebeshuber I C, Thompson J B, Amo Y D. Mater. Sci. Technol., 2002, 18: 763-766
[79] Wetherbee R, Lind J L, Burke J, Quatrano R S. J. Phycol., 1998, 34: 9-15
[80] (a) Gebeshuber C, Graford R M. Proc. Inst. Mech. Eng., 2006, 220: 787-791; (b) Gebeshuber I C, Stachelberger H, Drack M. J. Nanosci. Nanotechnol., 2005, 5: 79-87
[81] Vyvermann W, Chepurnov V A. Mater. Sci. Eng. C, 2005, 25: 658-663
[82] Setaro A, Lettieri S, Maddalena P. Appl. Phys. Lett., 2007, 91: art. no. 051921
[83] Townley H E, Woon K L, Payne F P, Cooper H W, Parker A R. Nanotechnology, 2007, 18: art. no. 295101
[84] De Stefano L, Rea I, Rendina I, de Stefano M, Moretti L. Opt. Express, 2007, 15: 18082-18088
[85] Fuhrmann T, Landwehr S, El Rharbi-Kucki M. Appl. Phys. B, 2004, 78: 257-260
[86] Druart G, Gu閞ineau N, Haïdar R, Lambert E, Tauvy M, Th閠as S, Rommelu鑢e S, Primot J, Deschamps J. Proc. SPIE 2992, Micro-Optics, 2008, art. no. 69920G
[87] Gogoi A, Buragohain A K, Choudhury A, Ahmed G A. J. Quant. Spectrosc. Radiat. Transfer, 2009, 110: 1566-1578
[88] O'Regan B, Grätzel M. Nature, 1991, 353: 737-740

[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[4] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[5] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[6] Jianyun Lin, Shihe Luo, Chongling Yang, Ying Xiao, Liting Yang, Zhaoyang Wang. Bio-Based Polymeric Hemostatic Material and Wound Dressing [J]. Progress in Chemistry, 2021, 33(4): 581-595.
[7] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[8] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[9] Libo Mao, Huailing Gao, Yufeng Meng, Yulu Yang, Xiangsen Meng, Shuhong Yu. Biomineralization: A Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1086-1099.
[10] Yanhua Sang, Haihua Pan, Ruikang Tang. Condensed-Matter Chemistry in Biomineralization [J]. Progress in Chemistry, 2020, 32(8): 1100-1114.
[11] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[12] Ruipu Zhang, Runze Zhang, Sanzhong Luo. Bio-Inspired ortho-Quinone Catalysis [J]. Progress in Chemistry, 2020, 32(11): 1753-1765.
[13] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[14] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[15] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.