中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (04): 642-649 DOI: 10.7536/PC121129 Previous Articles   Next Articles

• Review •

Nucleation, Growth, and Aggregation of Nanocrystallites in Urine of Calcium Oxalate Stone Patients as well as Kidney Stone Formation

Ouyang Jianming*, Zhang Guangna, Wang Fengxin, Li Junjun   

  1. Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
  • Received: Revised: Online: Published:
PDF ( 751 ) Cited
Export

EndNote

Ris

BibTeX

The main constituents of kidney stones are inorganic crystals such as calcium oxalate (CaOxa). At present kidney stones can be diagnosed only after formation, which brings great suffering to patients. The formation of kidney stones related closely to the properties of urinary nanocrystallites. If kidney stone can be detected prior to its formation, it might be effectively prevented. In this paper, an review is given about the differences of urinary nanocrystallites between the patients of kidney stone and healthy controls, as well as the relationship with the formation of kidney stones. These differences comprise size and distribution, agglomeration, morphology, chemical composition, Zeta potential and stability of the microcrystals. The changes in these properties in CaOxa stone patients before and after taking potassium citrate are discussed. It is concluded that agglomeration of urinary nanocrystallites is a key factor leading to rapid growth of the crystallites and formation of urinary stones. Through the regulation of physical and chemical properties of nanocrystallites, the formation and recurrence of kidney stones are possibly inhibited.

Contents
1 Introduction
2 Differences of urine crystallites of kidney stone patients and controls
2.1 Size
2.2 Aggregation
2.3 Morphology
2.4 Chemical composition
2.5 Zeta potential
2.6 Stability
3 Agglomeration of urinary nanocrystallites promotes stone formation
4 Properties changes in urinary nanocrystallites in calcium oxalate stone patients before and after potassium citrate administration
5 Conclusions and outlook

CLC Number: 

[1] Lee T, Lin Y C. Cryst. Growth Des., 2011, 11(7): 2973-2992
[2] An Z, Lee S, Oppenheimer H, Wesson J A, Ward M D. J. Am. Chem. Soc., 2010, 132(38): 13188-13190
[3] Knauf F, Preisig P A. Kidney Int., 2011, 80(4): 327-329
[4] Peng H, Ouyang J M, Yao X Q, Yang R E. Int. J. Nanomed., 2012, 7(8): 4727-4737
[5] He J Y, Deng S P, Ouyang J M. IEEE Trans. Nanobiosci., 2010, 9(2): 156-163
[6] Verdesca S, Fogazzi G B, Garigali G, Messa P, Daudon M. Clin. Chem. Lab. Med., 2011, 49(3): 515-520
[7] Robertson W G, Peacock M, Marshall R W, Marshall D H, Nordin B E. New Engl. J. Med., 1976, 294(5): 249-252
[8] Daudon M, Hennequin C, Boujelben G, Lacour B, Jungers P. Kidney Int., 2005, 67: 1934-1943
[9] Daudon M, Jungers P. Nephron Physiol., 2004, 98: 31-36
[10] Robert M, Boularan A M, Delbos O, Monnier L, Grasset D. Eur. Urol., 1996, 29(4): 456-461
[11] Robert M, Boularan A M, Delbos O, Guiter J, Descomps B. Urol. Int., 1998, 60: 41-46
[12] Elliot J S, Rabinowitz I N. J. Urol., 1980, 123(3): 324-327
[13] Werness P G, Bergert J H, Smith L H. J. Cryst Growth, 1981, 53: 166-181
[14] Herrmann U, Schwille P O. Urol. Res., 1992, 20(2): 157-64
[15] Gui B S, Huang Z J, Xu X J, Li M R, He J Y, Ouyang J M. J. Nanosci. Nanotechnol., 2010, 10(8): 5232-5241
[16] Deng F, Ouyang J M. Mat. Sci. Eng. C-Bio. S, 2006, 26(4): 688-691
[17] He J Y, Ouyang J M, Yang Y E. Mater. Sci. Eng. C-Bio S, 2010, 30: 878-885
[18] Li J J, Hou S H, Xia Z Y, Ouyang J M. Spectrosc. Spect. Anal., 2011, 31(8): 2263-2267
[19] Mullin J W. Crystallization, 3rd ed. London: Butterworth Heinemann, 2000. 102-288
[20] Michelacci Y M, Glashan R Q, Schor N. Kidney Int., 1989, 36: 1022-1028
[21] Schwille P O, Schmiedl A, Herrmann U, Fan J, Gottlieb D, Manoharan M, Wipplinger J. Urol. Res., 1999, 27: 117-126
[22] Qiu S R, Wierzbicki A, Salter E A, Zepeda S, Orme C A, Hoyer J R, Nancollas G H, Cody A M, de Yoreo J J. J. Am. Chem. Soc., 2005, 127: 9036-9044
[23] Saw N K, Rao P N, Kavanagh J P. Urol. Res., 2008, 36: 11-15
[24] Baumann J M, Affolter B, Meyer R. Urol. Res., 2010, 38(1): 21-27
[25] Vervaet B A, Verhulst A, Dauwe S E, de Broe M E, D'Haese P C. Kidney Int., 2009, 75(1): 41-51
[26] Daudon M, Cohen-Solal F, Barbey F, Gagnadoux M, Knebelmann B, Jungers P. Urol. Res., 2003, 31: 207-211
[27] Wesson A J, Worcester M E, Wiessner J H, Mandel N S. Kidney Int., 1998, 53: 952-957
[28] Mandel N. J. Am. Soc. Nephrol. 1994, 5 (Suppl. 1): S37-S45
[29] Murphy D L, Beretvas S N, Pituch K A. Structural Equation Modeing: A Multidisciplinary Journal, 2011, 18(3): 430-448
[30] Frisken B. Appl. Opt., 2001, 40(24): 4087-4091
[31] Fuselier H A, Ward D M. Urology, 1995, 45: 942-946
[32] 李君君 (Li J J), 侯善华 (Hou S H), 夏志月 (Xia Z Y), 欧阳健明 (Ouyang J M). 无机化学学报 (J. Inorg. Chem.), 2012, 28(2): 245-250
[33] 晋勇 (Jin Y), 孙小松 (Sun X S), 薛屺 (Xue J). X-射线衍射分析技术 (X-ray Diffraction Analysis Techniques). 北京: 国防工业出版社 (Beijing: National Defence Industrial Press), 2008. 173-174, 193
[34] Ding Y M, Xia Z Y, Zhang G N, Ouyang J M. Adv. Mater. Res., 2012, 554/556: 47-50
[35] Duan C Y, Zhang G N, Ding Y M, Gui B S, Xue J F, Ouyang J M. Int. J. Nanomed., 2013, 8: 909-918

[1] Yanhua Sang, Haihua Pan, Ruikang Tang. Condensed-Matter Chemistry in Biomineralization [J]. Progress in Chemistry, 2020, 32(8): 1100-1114.
[2] Yang Haocheng, Chen Yifu, Ye Chen, Wan Lingshu, Xu Zhikang. Advances in Porous Organic-Inorganic Composite Membranes [J]. Progress in Chemistry, 2015, 27(8): 1014-1024.
[3] Pan Yu, Li Na, Zhou Runhong, Zhao Min. Nano-Magnetosomes in Magnetotactic Bacteria [J]. Progress in Chemistry, 2013, 25(10): 1781-1794.
[4] Wang Ben, Tang Ruikang*. Biomineralization: One Promising Bridge between Inorganic Chemistry and Biomedicine [J]. Progress in Chemistry, 2013, 25(04): 633-641.
[5] Liu Chuang, Wang Yuangui, Geng Jiaqing, Jiang Zhongyi, Yang Dong. Biosynthesis of Inorganic Nanoparticles [J]. Progress in Chemistry, 2011, 23(12): 2510-2521.
[6] Wu Congmeng, Wang Xiaoqiang, Zhao Kang, Cao Meiwen, Xu Hai, Lü Jianren. AFM Study of Calcite Growth and Dissolution on the (104) Face [J]. Progress in Chemistry, 2011, 23(01): 107-124.
[7] Ouyang Jianming, Yang Rue, Tan Jin. Effect of Renal Epithelial Cell After Injury on Biomineralization of Calcium Oxalate [J]. Progress in Chemistry, 2010, 22(08): 1665-1671.
[8] Cai Guobin|Guo Xiaohui|Yu Shuhong**. Polymer Controlled Biomimetic Mineralization [J]. Progress in Chemistry, 2008, 20(0708): 1001-1014.
[9] Xu Xurong|Cai Anhua|Liu Rui|Pan Haihua|Tang Ruikang**. Amorphous Calcium Carbonate in Biomineralization [J]. Progress in Chemistry, 2008, 20(01): 54-59.
[10] Huanxin Yuan Jianming Ouyang . Chemical Basis in Inhibition of Urinary Stones by Tartaric Acid and Its Salts [J]. Progress in Chemistry, 2006, 18(05): 573-578.
[11] Ou Yangjianming**. Research Progress in Lattice Matching and Electrostatic Compatibility in Growth of Biominerals Induced by Monolayers [J]. Progress in Chemistry, 2005, 17(05): 931-937.
[12] Ouyang Jianming**. Biominerals and Their Mineralization Process [J]. Progress in Chemistry, 2005, 17(04): 749-756.
[13] Ou Yangjianming**,Chen Dezhi. The Growth of Biomineral Crystals Modulated by Self-Assembled Monolayers [J]. Progress in Chemistry, 2005, 17(03): 563-572.
[14] Mao Chuanbin,Li Hengde,Cui Fuzhai,Feng Qingling,Wang Hao. Biomimetic Synthesis of Inorganic Materials [J]. Progress in Chemistry, 1998, 10(03): 246-.