中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (04): 530-538 DOI: 10.7536/PC121125 Previous Articles   Next Articles

Structural Basis of Human Serum Albumin and Its Complexes

Yang Feng1,2, Liang Hong*1,2   

  1. 1. State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin 541004, China;
    2. School of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, China
  • Received: Revised: Online: Published:
PDF ( 1382 ) Cited
Export

EndNote

Ris

BibTeX

Human serum albumin is the most abundant protein in plasma and one of the major binders/carriers of fatty acid and drugs, plays an essential role in pharmacokinetics and delivery of drugs for it transports a wide variety of drugs to target organs and tissues. In the past forty years, the interaction between albumin and compounds is research hotspots both at home and abroad. Furthermore, human serum albumin has been extensively studied as drug carrier. Therefore, this paper first reviews the knowledge on structure of human serum albumin and its complexes, and then puts forward some future challenges on human serum albumin field.

Contents
1 Introduction
2 Structural basis of human serum albumin
2.1 Overall structure of human serum albumin
2.2 Sub-domain structure of human serum albumin
2.3 Cysteine-34 of human serum albumin
3 Structural basis of human serumalbumin-fatty acids
3.1 Binding site of fatty acids at human serum albumin
3.2 Influence of fatty acids on conformation of human serum albumin
4 Structural basis of human serum albumin-drug
4.1 Site Ⅰ
4.2 Site Ⅱ
5 Conclusions and outlook

CLC Number: 

[1] Fasano M, Curry S, Terreno E, Galliano M, Fanali G, Narciso P, Notari S, Ascenzi P. IUBMB Life, 2005, 57: 787-796
[2] Peters T. All About Albumin: Biochemistry, Genetics, and Medical Applications. California: Academic Press. 1995
[3] Amdursky N, Pecht I, Sheves M, Cahen D. J. Am. Chem. Soc., 2012, 134(44): 18221-18224
[4] Mao H, Hajduk P J, Craig R, Bell R, Borre T, Fesik S W. J. Am. Chem. Soc., 2001, 123(43): 10429-10435
[5] Nicoletti F P, Howes B D, Fittipaldi M, Fanali G, Fasano M, Ascenzi P, Smulevich G. J. Am. Chem. Soc., 2008, 130(35): 11677-11688
[6] Stewart A J, Blindauer C A, Berezenko S, Sleep D, Sadler P J. Proc. Natl. Acad. Sci. U. S. A., 2003, 100 (7): 3701-3706
[7] Oltersdorf T, Elmore S W, Shoemaker A R, Armstrong R C, Augeri D J, Belli B A, Bruncko M, Deckwerth T L, Dinges J, Hajduk P J, Joseph M K, Kitada S, Korsmeyer S J, Kunzer A R, Letai A, Li C, Mitten M J, Nettesheim D G, Ng S, Nimmer P M, O'Connor J M, Oleksijew A, Petros A M, Reed J C, Shen W, Tahir S K, Thompson C B, Tomaselli K J, Wang B, Wendt M D, Zhang H, Fesik S W, Rosenberg S H. Nature, 2005, 435(7042): 677-681
[8] Wang Y Q, Wang X Y, Wang J, Zhao Y M, He W J, Guo Z J. Inorganic Chemistry, 2011, 50 (24): 12661-12668
[9] Simard J R, Zunszain P A, Ha C E, Yang J, Bhagavan N V, Petitpas I, Curry S, Hamilton J A. Proc. Natl. Acad. Sci. U. S. A., 2005, 102: 17958-17963
[10] El-Kemary M, Gil M, Douhal A. J. Med. Chem., 2007, 50(12): 2896-2902
[11] Ibrahim N, Ibrahim H, Kim S, Nallet J P, Nepveu F. Biomacromolecules, 2010, 11(12): 3341-3351
[12] Hu Y J, Liu Y, Xiao X H. Biomacromolecules, 2009, 10(3): 517-521
[13] Hong Y N, Feng C, Yu Y, Liu J Z, Jacky W Y, Kathy Q L, Tang B Z. Analytical Chemistry, 2010, 82 (16): 7035-7043
[14] Krishnakumar S S, Panda D. Biochemistry, 2002, 41(23): 7443-7452
[15] Sytnik A, Litvinyuk I. Proc. Natl. Acad. Sci. U. S. A., 1996, 93(23): 12959-12963
[16] Ghuman J, Zunszain P A, Petitpas I, Bhattacharya A A, Otagiri M, Curry S. J. Mol. Biol., 2005, 353: 38-52
[17] Carter D C, He X M, Munson S H, Twigg P D, Gernert K M, Broom M B, Miller T Y. Science, 1989, 244(4909): 1195-1198
[18] He X M, Carter D C. Nature, 1992, 358(6383): 209-215
[19] Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K. Protein Eng., 1999, 12(6): 439-446
[20] Curry S, Brick P, Franks N P. Biochim. Biophys. Acta, 1999, 1441: 131-140
[21] Curry S. Vox Sanguinis, 2002, 83: 315-319
[22] Fanali G, di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P. Mol. Aspects Med., 2012, 33(3): 209-290
[23] Curry S, Mandelkow H, Brick P, Franks N. Nature Struct. Biol., 1998, 5: 827-835
[24] Bhattacharya A A, Gr黱e T, Curry S. J. Mol. Biol., 2000, 303: 721-732
[25] Fredrickson D S, Gordon R S. J. Clin. Invest., 1958, 37(11): 1504-1515
[26] Simard J R., Zunszain P A, Hamilton J A, Curry S. J. Mol. Biol., 2006, 361: 336-351
[27] Fujiwara S, Amisaki T. Biophys. J., 2008, 94(1): 95-103
[28] Brown N A, Wilson A G, Bridges J W. Biochem Pharmacol., 1982, 31(24): 4019-4029
[29] Colmenarejo G. Med. Res. Rev., 2003, 23(3): 275-301
[30] Kragh-Hansen U, Chuang V T, Otagiri M. Biol. Pharm. Bull., 2002, 25(6): 695-704
[31] Fanali G, Pariani G, Ascenzi P, Fasano M. FEBS J., 2009, 276(8): 2241-2250
[32] Kaneko K, Chuang V T, Minomo A, Yamasaki K, Bhagavan N V, Maruyama T, Otagiri M. IUBMB Life, 2011, 63(4): 277-285
[33] Sudlow G, Birkett D J, Wade D N. Mol. Pharmacol., 1975, 11(6): 824-832
[34] Wardell M, Wang Z, Ho J X, Robert J, Ruker F, Ruble J, Carter D C. Biochem. Biophys. Res. Commun., 2002, 291(4): 813-819
[35] Petitpas I, Gr黱e T, Bhattacharya A A, Curry S. J. Mol. Biol., 2001, 314: 955-960
[36] Petitpas I, Petersen C E, Ha C E, Bhattacharya A A, Zunszain P A, Ghuman J, Bhagavan N V, Curry S. Proc. Natl. Acad. Sci. U. S. A., 2003, 100: 6440-6445
[37] Luo Z, Shi X, Hu Q, Zhao B, Huang M. Chem. Res. Toxicol., 2012, 25(5): 990-992
[38] Ryan A J, Zunszain P A, Ghuman J, Chung C W, Curry S. J. Struct. Biol., 2011, 174: 84-91
[39] Guo S, Shi X, Yang F, Chen L, Meehan E J, Bian C, Huang M. Biochem J., 2009, 423(1): 23-30
[40] Zhu L, Yang F, Chen L, Meehan E J, Huang M. J. Struct. Biol., 2008, 162(1): 40-49
[41] Hein K L, Kragh-Hansen U, Morth J P, Jeppesen M D, Otzen D, Møller J V, Nissen P. J. Struct. Biol., 2010, 171(3): 353-360
[42] Buttar D, Colclough N, Gerhardt S, MacFaul P A, Phillips S D, Plowright A, Whittamore P, Tam K, Maskos K, Steinbacher S, Steuber H. Bioorg. Med. Chem., 2010, 18(21): 7486-7496
[43] Lejon S, Frick I M, Björck L, Wikström M, Svensson S. J Biol Chem., 2004, 279(41): 42924-42928
[44] Yamaguchi S, Aldini G, Ito S, Morishita N, Shibata T, Vistoli G, Marina Carini M, Uchida K. J. Am. Chem. Soc., 2010, 132(2): 824-832
[45] Curry S. Drug Metab. Pharmacokinet., 2009, 24: 342-357
[46] Petitpas I, Bhattacharya A A, Twine S, East M, Curry S. J. Biol. Chem., 2001, 276: 22804-22809
[47] Yang F, Bian C, Zhu L, Zhao G, Huang Z, Huang M. J. Struct. Biol., 2007, 157(2): 348-355
[48] Bhattacharya A A, Curry S, Franks N P. J. Biol. Chem., 2000, 275: 38731-38738
[49] Kratz F, Elsadek B. J. Control. Release, 2012, 161(2): 429-445
[50] Elsadek B, Kratz F. J. Control. Release, 2012, 157(1): 24-28
[51] Neumann E, Frei E, Funk D, Becker M D, Schrenk H H, M黮ler-Ladner U, Fiehn C. Expert. Opin. Drug Deliv., 2010, 7(8): 915-925
[52] Kratz F. J. Control. Release, 2008, 132(3): 171-183
[53] Yang F, Lee P, Ma Z, Ma L, Yang G, Wu X, Liang H. J Pharm. Sci., 2013, 102(1): 84-92
[54] Yang F, Yue J, Ma L, Ma Z, Li M, Wu X, Liang H. Mol. Pharm, 2012, 9(11): 3259-3265
[55] Yeung N, Lin Y W, Gao Y G, Zhao X, Brandy S, Russell, Lei L Y, Kyle D, Miner, Howard R, Lu Y. Nature, 2009, 462: 1079-1082
[56] Lu Y, Yeung N, Sieracki N, Nicholas M. Nature, 2009, 460: 855-862
[57] Komatsu T, Nakagawa A, Zunszain P A, Curry S, Tsuchida E. J. Am. Chem. Soc., 2007, 129: 11286-11295
[58] Komatsu T, Wang R. M, Zunszain P A, Curry S, Tsuchida E. J. Am. Chem. Soc., 2006, 128: 16297-16301
[59] Komatsu T, Ohmichi N, Nakagawa A, Zunszain P A, Curry S, Tsuchida E. J. Am. Chem. Soc., 2005, 127: 15933-15942
[60] Komatsu T, Ohmichi N, Zunszain P A, Curry S, Tsuchida E. J. Am. Chem. Soc., 2004, 126: 14304-14305

No related articles found!