中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (06): 940-960 DOI: 10.7536/PC121120 Previous Articles   Next Articles

• Review •

Task-Specific Ionic Liquids Catalyzed Carbon-Heteroatom Bond Formation Reactions

Li Man1,2, Yang Lei1, Han Feng1, Chen Jing1*, Xia Chungu1   

  1. 1. State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100039, China
  • Received: Revised: Online: Published:
PDF ( 2190 ) Cited
Export

EndNote

Ris

BibTeX

Ionic liquids have emerged as excellent solvents for synthesis and catalysis in the past decades due to their special properties. However, their relatively high cost and potential risks to human health and environment make their function as catalysts rather than solvents more popular. Incorporating specific functional group(s) into one or both ions of ionic liquids to make them catalytic is highly important. Numerous so-called task-specific or functionalized ionic liquids are designed and successfully applied in catalyzing various reactions. In this review, we present the latest achievements in the carbon-heteroatom bond formation reactions catalyzed by task-specific ionic liquids. The contents are arranged according to the specific types of carbon-heteroatom bond formation reactions. As for the type of task-specific ionic liquids, this review focuses on acidic ionic liquids, basic ionic liquids, organometallic ionic liquids, acid-base bifunctional ionic liquids and chiral ionic liquids. Contents
1 Introduction
2 Formation of carbon-oxygen bonds
2.1 Formation of esters
2.2 Formation of ethers
2.3 Protection of carbonyl and hydroxyl groups
2.4 Oxidation of olefins
2.5 Related carbonylation reactions
2.6 Synthesis of oxygen-containing heterocycles
3 Formation of carbon-nitrogen bonds
3.1 Formation of β-amino carbonyl compounds
3.2 Formation of amides
3.3 Formation of carbon-nitrogen double bonds
3.4 N-Alkylation reaction
3.5 Hydroamination reaction
3.6 Protection of amino groups
3.7 Nitration reaction
3.8 Asymmetric aza Diels-Alder reaction
3.9 Related carbonylation reactions
3.10 Synthesis of nitrogen-containing heterocycles
4 Formation of other carbon-heteroatom bonds
4.1 Formation of carbon-sulfur bonds
4.2 Formation of carbon-halogen bonds
5 Conclusion and outlook

CLC Number: 

[1] De Cienfuegos L Á, Robles R, Miguel D, Justicia J, Cuerva J M. ChemSusChem, 2011, 4: 1035-1048
[2] Chen J, Spear S K, Huddleston J G, Rogers R D. Green Chem., 2005, 7: 64-82
[3] Horváth I T, Anastas P T. Chem. Rev., 2007, 107: 2169-2173
[4] Welton T. Chem. Rev., 1999, 99: 2071-2083
[5] Wasserscheid P, Keim W. Angew. Chem. Int. Ed., 2000, 39: 3772-3789
[6] Zhao D B, Wu M, Kou Y, Min E Z. Catal. Today, 2002, 74: 157-189
[7] Dupont J, de Souza R F, Suarez P A Z. Chem. Rev., 2002, 102: 3667-3691
[8] Cole-Hamilton D J. Science, 2003, 299: 1702-1706
[9] Pǎrvulescu V I, Hardacre C. Chem. Rev., 2007, 107: 2615-2665
[10] Betz D, Altmann P, Cokoja M, Herrmann W A, Kühn F E. Coord. Chem. Rev., 2011, 255: 1518-1540
[11] Hallett J P, Welton T. Chem. Rev., 2011, 111: 3508-3576
[12] Costello D M, Brown L M, Lamberti G A. Green Chem., 2009, 11: 548-553
[13] Lataa A, Ndzi M, Stepnowski P. Green Chem., 2009, 11: 580-588
[14] Petkovic M, Seddon K R, Rebelo L P N, Pereira C S. Chem. Soc. Rev., 2011, 40: 1383-1403
[15] Coleman D, Gathergood N. Chem. Soc. Rev., 2010, 39: 600-637
[16] Davis J H. Chem. Lett., 2004, 33: 1072-1077
[17] Giernoth R. Angew. Chem. Int. Ed., 2010, 49: 2834-2839
[18] Hajipour A R, Rafiee F. Org. Prep. Proced. Int., 2010, 42: 285-362
[19] Wang B, Zhou S, Sun Y C, Xu F, Sun R C. Curr. Org. Chem., 2011, 15: 1392-1422
[20] 钟涛(Zhong T), 乐长高(Le Z G), 谢宗波(Xie Z B), 曹霞(Cao X), 吕雪霞(Lv X X). 有机化学(Chin. J. Org. Chem.), 2010, 30(7): 981-987
[21] Bica K, Gaertner P. Eur. J. Org. Chem., 2008, 3235-3250
[22] Luo S Z, Zhang L, Cheng J P. Chem. Asian J., 2009, 4: 1184-1195
[23] Hartwig J F. Nature, 2008, 455: 314-322
[24] Corma A, Leyva-Pérez A, Sabater M J. Chem. Rev., 2011, 111: 1657-1712
[25] Miao W S, Chan T H. Acc. Chem. Res., 2006, 39: 897-908
[26] Gu Y L, Li G X. Adv. Synth. Catal., 2009, 351: 817-847
[27] Monge-Marcet A, Pleixats R, Cattoën X, Man M. Catal. Sci. Technol., 2011, 1: 1544-1563
[28] Zhang Q H, Zhang S G, Deng Y Q. Green Chem., 2011, 13: 2619-2637
[29] Li H, Bhadury P S, Song B A, Yang S. RSC Adv., 2012, 2: 12525-12551
[30] Selvam T, Machoke A, Schwieger W. Appl. Catal. A: Gen., 2012, 445/446: 92-101
[31] Pereira M M A. Curr. Org. Chem., 2012, 16: 1680-1710
[32] Šebesta R, Kmentová I, Toma Š。 Green Chem., 2008, 10: 484-496
[33] Huo C D, Chan T H. Chem. Soc. Rev., 2010, 39: 2977-3006
[34] Cole A C, Jensen J L, Ntai I, Tran K L T, Weaver K J, Forbes D C, Davis J H. J. Am. Chem. Soc., 2002, 124: 5962-5963
[35] Leng Y, Wang J, Zhu D R, Ren X Q, Ge H Q, Shen L. Angew. Chem. Int. Ed., 2009, 48: 168-171
[36] Zhao Y W, Long J X, Deng F G, Liu X F, Li Z, Xia C G, Peng J J. Catal. Commun., 2009, 10: 732-736
[37] Liu X M, Ma H Y, Wu Y, Wang C, Yang M, Yan P F, Welz-Biermann U. Green Chem., 2011, 13: 697-701
[38] Li H, Qiao Y X, Hua L, Hou Z S, Feng B, Pan Z Y, Hu Y, Wang X R, Zhao X G, Yu Y Y. ChemCatChem, 2010, 2: 1165-1170
[39] Zhang S D, Lefebvre H, Tessier M, Fradet A. Green Chem., 2011, 13: 2786-2793
[40] Yang Z Z, He L N, Dou X Y, Chanfreau S. Tetrahedron Lett., 2010, 51: 2931-2934
[41] Chiappe C, Rajamani S. Pure Appl. Chem., 2012, 84: 755-762
[42] Gade S M, Munshi M K, Chherawalla B M, Rane V H, Kelkar A A. Catal. Commun., 2012, 27: 184-188
[43] Selva M, Noè M, Perosa A, Gottardo M. Org. Biomol. Chem., 2012, 10: 6569-6578
[44] Han S, Luo M, Zhou X L, He Z, Xiong L P. Ind. Eng. Chem. Res., 2012, 51: 5433-5437
[45] Qureshi Z S, Deshmukh K M, Bhor M D, Bhanage B M. Catal. Commun., 2009, 10: 833-837
[46] Deshmukh K M, Qureshi Z S, Dhake K P, Bhanage B M. Catal. Commun., 2010, 12: 207-211
[47] Li K X, Chen L, Yan Z C, Wang H L. Catal. Lett., 2010, 139: 151-156
[48] Li K X, Chen L, Wang H L, Lin W B, Yan Z C. Appl. Catal. A: Gen., 2011, 392: 233-237
[49] Baj S, Chrobok A, Supska R. Green Chem., 2009, 11: 279-282
[50] Chrobok A. Tetrahedron, 2010, 66: 6212-6216
[51] Guo H, Li X, Wang J L, Jin X H, Lin X F. Tetrahedron, 2010, 66: 8300-8303
[52] Kim J H, Kwak S, Lee J S, Vo H T, Kim C S, Kang H J, Kim H S, Lee H. Appl. Catal. B: Environ., 2009, 89: 137-141
[53] Jeong Y, Kim D Y, Choi Y, Ryu J S. Org. Biomol. Chem., 2011, 9: 374-378
[54] Kore R, Kumar T J D, Srivastava R. J. Mol. Catal. A: Chem., 2012, 360: 61-70
[55] Kore R, Srivastava R. Tetrahedron Lett., 2012, 53: 3245-3249
[56] Ma X M, Jiang T, Han B X, Huang J, Zhu A L, Zhang J C. Curr. Org. Chem., 2007, 11: 477-482
[57] Kalviri H A, Kerton F M. Adv. Synth. Catal., 2011, 353: 3178-3186
[58] Zhang S D, Féret A, Lefebvre H, Tessier M, Fradet A. Chem. Commun., 2011, 47: 11092-11094
[59] Liang S G, Liu H Z, Zhou Y X, Jiang T, Han B X. New J. Chem., 2010, 34: 2534-2536
[60] De C Y, Cai Q H, Wang X G, Zhao J X, Lu B. J. Chem. Technol. Biotechnol., 2011, 86: 105-108
[61] Li Y L, Gu D G, Xu X P, Ji S J. Chin. J. Chem., 2009, 27: 1558-1562
[62] Hu Y L, Ma X Y, Lu M. Can. J. Chem., 2011, 89: 471-480
[63] Guchhait G, Misra A K. Catal. Lett., 2011, 141: 925-930
[64] Procuranti B, Connon S J. Org. Lett., 2008, 10: 4935-4938
[65] Myles L, Gore R, Špulák M, Gathergood N, Connon S J. Green Chem., 2010, 12: 1157-1162
[66] Chakraborti A K, Roy S R. J. Am. Chem. Soc., 2009, 131: 6902-6903
[67] López I, Bravo J L, Caraballo M, Barneto J L, Silvero G. Tetrahedron Lett., 2011, 52: 3339-3341
[68] Wang S S, Liu W, Wan Q X, Liu Y. Green Chem., 2009, 11: 1589-1594
[69] Qiao Y X, Hou Z S, Li H, Hu Y, Feng B, Wang X R, Hua L, Huang Q F. Green Chem., 2009, 11: 1955-1960
[70] Baj S, Bech M, Gibas M. Appl. Catal. A: Gen., 2012, 433/434: 197-205
[71] Zhang P F, Gong Y T, Lv Y Q, Guo Y, Wang Y, Wang C M, Li H R. Chem. Commun., 2012, 48: 2334-2336
[72] Deng F G, Hu B, Sun W, Chen J, Xia C G. Dalton Trans., 2007, 4262-4267
[73] Lv Z G, Wang H S, Li J, Guo Z M. Res. Chem. Intermed., 2010, 36: 1027-1035
[74] Stricker M, Linder T, Oelkers B, Sundermeyer J. Green Chem., 2010, 12: 1589-1598
[75] Song H Y, Li Z, Chen J, Xia C G. Catal. Lett., 2012, 142: 81-86
[76] Sun J M, Fujita S, Arai M. J. Organomet. Chem., 2005, 690: 3490-3497
[77] Zhang S J, Chen Y H, Li F W, Lu X M, Dai W B, Mori R. Catal. Today, 2006, 115: 61-69
[78] Sakakura T, Kohno K. Chem. Commun., 2009, 1312-1330
[79] Zhang Y G, Chan J Y G. Energy Environ. Sci., 2010, 3: 408-417
[80] North M, Pasquale R, Young C. Green Chem., 2010, 12: 1514-1539
[81] Jutz F, Andanson J M, Baiker A. Chem. Rev., 2011, 111: 322-353
[82] Wang J L, Miao C X, Dou X Y, Gao J, He L N. Curr. Org. Chem., 2011, 15: 621-646
[83] Yang Z Z, Zhao Y N, He L N. RSC Adv., 2011, 1: 545-567
[84] Yang Z Z, He L N, Miao C X, Chanfreau S. Adv. Synth. Catal., 2010, 352: 2233-2240
[85] Jiang T, Zhou Y X, Hu S Q, Ma X M, Liang S G, Han B X. J. Mol. Catal. A: Chem., 2008, 284: 52-57
[86] Sun J, Han L J, Cheng W G, Wang J Q, Zhang X P, Zhang S J. ChemSusChem, 2011, 4: 502-507
[87] Wu F, Dou X Y, He L N, Miao C X. Lett. Org. Chem., 2010, 7: 73-78
[88] Zhang S L, Huang Y Z, Jing H W, Yao W X, Yan P. Green Chem., 2009, 11: 935-938
[89] Song Y Y, Jin Q R, Zhang S L, Jing H W, Zhu Q Q. Sci. China-Chem., 2011, 54: 1044-1050
[90] Li J, Wang L G, Shi F, Liu S M, He Y D, Lu L J, Ma X Y, Deng Y Q. Catal. Lett., 2011, 141: 339-346
[91] Wang J Q, Sun J, Shi C Y, Cheng W G, Zhang X P, Zhang S J. Green Chem., 2011, 13: 3213-3217
[92] Yang Z Z, Zhao Y N, He L N, Gao J, Yin Z S. Green Chem., 2012, 14: 519-527
[93] Potdar M K, Mohile S S, Salunkhe M M. Tetrahedron Lett., 2001, 42: 9285-9287
[94] Gu Y L, Zhang J, Duan Z Y, Deng Y Q. Adv. Synth. Catal., 2005, 347: 512-516
[95] Singh V, Kaur S, Sapehiyia V, Singh J, Kad G L. Catal. Commun., 2005, 6: 57-60
[96] Fang D, Cheng J, Gong K, Shi Q R, Liu Z L. Catal. Lett., 2008, 121: 255-259
[97] Das S, Majee A, Hajra A. Green Chem. Lett. Rev., 2011, 4: 349-353
[98] Kore R, Srivastava R. Catal. Commun., 2011, 12: 1420-1424
[99] Khaligh N G. Catal. Sci. Technol., 2012, 2: 1633-1636
[100] Kumar A, Kumar P, Tripathi V D, Srivastava S. RSC Adv., 2012, 2: 11641-11644
[100] Kumar A, Kumar P, Tripathi V D, Srivastava S. RSC Adv., 2012, 2: 11641-11644

[101] Yadav L D S, Singh S, Rai V K. Tetrahedron Lett., 2009, 50: 2208-2212

[102] Rajesh S M, Perumal S, Menéndez J C, Pandian S, Murugesan R. Tetrahedron, 2012, 68: 5631-5636

[103] Zhi H Z, Lv C X, Zhang Q, Luo J. Chem. Commun., 2009, 2878-2880

[104] Fang D, Zhang H B, Liu Z L. J. Heterocycl. Chem., 2010, 47: 63-67

[105] Chen L, Li Y Q, Huang X J, Zheng W J. Heteroatom Chem., 2009, 20: 91-94

[106] Gong K, Fang D, Wang H L, Zhou X L, Liu Z L. Dyes Pigm., 2009, 80: 30-33

[107] Hajipour A R, Ghayeb Y, Sheikhan N, Ruoho A E. Synlett, 2010, 741-744

[108] Patel R, Srivastava V P, Yadav L D S. Synlett, 2010, 1797-1802

[109] Ying A G, Liu L, Wu G F, Chen G, Chen X Z, Ye W D. Tetrahedron Lett., 2009, 50: 1653-1657

[110] Roy S R, Chakraborti A K. Org. Lett., 2010, 12: 3866-3869

[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[7] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[8] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[9] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[10] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[13] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[14] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[15] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.