中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (05): 717-725 DOI: 10.7536/PC121110 Previous Articles   Next Articles

• Review •

Application of Modified Graphene for Cathode Catalysts in Fuel Cells

Zhong Yiliang, Mo Zaiyong, Yang Lijun, Liao Shijun*   

  1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
  • Received: Revised: Online: Published:
PDF ( 1546 ) Cited
Export

EndNote

Ris

BibTeX

Graphene, as a novel material, is recognized as a type of potential and attractive materials for the preparation of high performance fuel cell catalysts due to its unique structure and properties, such as ultra thin layer structure, ultra high surface area, and excellent conductivity, etc. Recent investigation showed that doped or surface modified graphene can be a potential candidate for the fuel cell catalyst by choosing different preparation process and varying the precursors. In this paper, we reviewed the research works in recent years for the application of doped and modified graphene as the cathode catalysts for fuel cells, including the direct use of doped graphene as catalyst for oxygen cathodic reduction, and the use of doped or surface modified graphene as support for the preparation of high performance cathode catalyst. Although the exact active center on these doped graphene for oxygen reduction reaction is still under debate, the succeed catalysis in both alkaline and acid solution opened up a brand new approach for the development of non-precious catalysts in fuel cells. With the improvement of catalytic performance and further understanding of structure-activity relation, we prospected that the application of doped-graphene in fuel cells will be broadened. Contents
1 Introduction
2 Direct use of modified graphene as cathode catalysts for oxygen reduction
2.1 Doped graphene and their performance as cathode catalysts
2.2 Surface modified graphene catalysts
3 Modified graphene as support for the preparation of cathode catalysts
3.1 Pt-based metals/modified graphene catalysts
3.2 Non-noble metals/modified graphene catalysts
4 Conclusions and outlook

CLC Number: 

[1] Rao C N, Sood A K, Subrahmanyam K S, Govindaraj A. Angewandte Chemie International Edition, 2009, 48: 7752-7777
[2] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Letters, 2008, 8: 902-907
[3] Qu L, Liu Y, Baek J B, Dai L. ACS Nano, 2010, 4: 1321-1326
[4] Gong K, Du F, Xia Z, Durstock M, Dai L. Science, 2009, 323: 760-764
[5] Wang H, Maiyalagan T, Wang X. ACS Catalysis, 2012, 2: 781-794
[6] Luo Z, Lim S, Tian Z, Shang J, Lai L, MacDonald B, Fu C, Shen Z, Yu T, Lin J. Journal of Materials Chemistry, 2011, 21: 8038-8044
[7] Sheng Z H, Shao L, Chen J J, Bao W J, Wang F B, Xia X H. ACS Nano, 2011, 5: 4350-4358
[8] Geng D, Chen Y, Chen Y, Li Y, Li R, Sun X, Ye S, Knights S. Energy & Environmental Science, 2011, 4: 760-764
[9] Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo J C, Pennycook S J, Dai H. Nature Nanotechnology, 2012, 7: 394-400
[10] Shao Y, Wang J, Engelhard M, Wang C, Lin Y. Journal of Materials Chemistry, 2010, 20: 743-748
[11] Zhang Y, Fugane K, Mori T, Niu L, Ye J. Journal of Materials Chemistry, 2012, 22: 6575-6580
[12] Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J, Li W X, Fu Q, Ma X, Xue Q. Chemistry of Materials, 2011, 23: 1188-1193
[13] Lin Z, Song M K, Ding Y, Liu Y, Liu M, Wong C P. Physical Chemistry Chemical Physics, 2012, 14: 3381-3387
[14] Lee K R, Lee K U, Lee J W, Ahn B T, Woo S I. Electrochemistry Communications, 2010, 12: 1052-1055
[15] Biddinger E, von Deak D, Ozkan U. Topics in Catalysis, 2009, 52: 1566-1574
[16] Sheng Z H, Gao H L, Bao W J, Wang F B, Xia X H. Journal of Materials Chemistry, 2012, 22: 390-395
[17] Wang S, Zhang L, Xia Z, Roy A, Chang D W, Baek J B, Dai L. Angewandte Chemie International Edition, 2012, 51: 4209-4212
[18] Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X A, Huang S. ACS Nano, 2011, 6: 205-211
[19] Yang S, Zhi L, Tang K, Feng X, Maier J, M黮len K. Advanced Functional Materials, 2012, 22: 3634-3640
[20] Jin Z, Nie H, Yang Z, Zhang J, Liu Z, Xu X, Huang S. Nanoscale, 2012, 4: 6455-6460
[21] Yao Z, Nie H, Yang Z, Zhou X, Liu Z, Huang S. Chemical Communications, 2012, 48: 1027-1029
[22] Liu Z W, Peng F, Wang H J, Yu H, Zheng W X, Yang J. Angewandte Chemie International Edition, 2011, 50: 3257-3261
[23] Sun Y, Li C, Xu Y, Bai H, Yao Z, Shi G. Chemical Communications, 2010, 46: 4740-4742
[24] Yang S, Feng X, Wang X, M黮len K. Angewandte Chemie International Edition, 2011, 50: 5339-5343
[25] Ma Y, Sun L, Huang W, Zhang L, Zhao J, Fan Q, Huang W. The Journal of Physical Chemistry C, 2011, 115: 24592-24597
[26] Lai L, Potts J R, Zhan D, Wang L, Poh C K, Tang C, Gong H, Shen Z, Lin J, Ruoff R S. Energy & Environmental Science, 2012, 5: 7936-7942
[27] Oh J, Yo E, Ono C, Kizuka T, Okada T, Nakamura J. Journal of Power Sources, 2008, 185: 886-891
[28] Haas O E, Simon J M, Kjelstrup S. Journal of Physical Chemistry C, 2009, 113: 20281-20289
[29] Seger B, Kamat P V. Journal of Physical Chemistry C, 2009, 113: 7990-7995
[30] Tan Y, Xu C, Chen G, Zheng N, Xie Q. Energy & Environmental Science, 2012, 5: 6923-6927
[31] He W, Jiang H, Zhou Y, Yang S, Xue X, Zou Z, Zhang X, Akins D L, Yang H. Carbon, 2012, 50: 265-274
[32] Shao Y Y, Zhang S, Wang C M, Nie Z M, Liu J, Wang Y, Lin Y H. Journal of Power Sources, 2010, 195: 4600-4605
[33] Nam K W, Song J, Oh K H, Choo M J, Park H A, Park J K, Choi J W. Carbon, 2012, 50: 3739-3747
[34] Li Y, Zhu E, McLouth T, Chiu C, Huang X, Huang Y. Journal of the American Chemical Society, 2012, 134: 12326-12329
[35] Jafri R I, Rajalakshmi N, Ramaprabhu S. Journal of Materials Chemistry, 2010, 20: 7114-7117
[36] Liu X, Li L, Meng C, Han Y. Journal of Physical Chemistry C, 2012, 116: 2710-2719
[37] Wu G, More K L, Johnston C M, Zelenay P. Science, 2011, 332: 443-447
[38] Proietti E, Jaouen F, Lef鑦re M, Larouche N, Tian J, Herranz J, Dodelet J P. Nature Communications, 2011, 2: 416
[39] Chen Z, Higgins D, Yu A, Zhang L, Zhang J. Energy & Environmental Science, 2011, 4: 3167-3192
[40] Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H. Nature Materials, 2011, 10: 780-786
[41] Wu Z S, Yang S, Sun Y, Parvez K, Feng X, M黮len K. Journal of the American Chemical Society, 2012, 134: 9082-9085
[42] Byon H R, Suntivich J, Shao-Horn Y. Chemistry of Materials, 2011, 23: 3421-3428
[43] Jiang R, Tran D T, McClure J, Chu D. Electrochemistry Communications, 2012, 19: 73-76

[1] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[2] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[3] Yu Bai, Shuanjin Wang, Min Xiao, Yuezhong Meng, Chengxin Wang. Phosphoric Acid Based Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2021, 33(3): 426-441.
[4] Siyan Yu, Long Zheng, Pengfei Meng, Xiudong Shi, Shijun Liao. M-N/C Electrocatalysts Derived from MOFs for Oxygen Reduction Reaction [J]. Progress in Chemistry, 2021, 33(10): 1693-1705.
[5] Lulu Huang, Kailing Sun, Mingrui Liu, Jing Li, Shijun Liao. Carbon-Based Cathode Materials for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2019, 31(10): 1406-1416.
[6] Zhang Wenrui, Zhang Zhihui, Gao Liguo, Ma Tingli. Double Perovskite Material as An Electrode for Intermediate-Temperature Solid Oxide Fuel Cells Application [J]. Progress in Chemistry, 2016, 28(6): 961-974.
[7] Lin Ling, Zhu Qing, Xu Anwu. Anode Catalysts and Cathode Catalysts of Direct Methanol Fuel Cells [J]. Progress in Chemistry, 2015, 27(9): 1147-1157.
[8] Miao He, Xue Yejian, Zhou Xufeng, Liu Zhaoping. Graphene-Based Oxygen Reduction Reaction Catalysts for Metal Air Batteries [J]. Progress in Chemistry, 2015, 27(7): 935-944.
[9] Liu Xu, Wu Juntao, Huo Jiangbei, Meng Xiaoyu, Cui Lishan, Zhou Qiong. Effects of Conducting Channels Microstructure in Proton Exchange Membrane on the Performance of Fuel Cells [J]. Progress in Chemistry, 2015, 27(4): 395-403.
[10] Chang Dingming, Zhang Haiqin, Lu Zhihao, Huang Guangtuan, Cai Lankun, Zhang Lehua. Behavior of Metal Ions in Microbial Fuel Cells [J]. Progress in Chemistry, 2014, 26(07): 1244-1254.
[11] Qi Zhigang, Gong Chenliang*, Liang Yu, Li Hui, Zhang Shujiang, Li Yanfeng. Highly Proton-Conductive Sulfonated Aromatic Polymers for Medium-Temperature Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2013, 25(12): 2103-2111.
[12] Liu Zhangbo, Liu Beibei, Xia Changrong. Nano-Structured Anodes of Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2013, 25(11): 1821-1829.
[13] Xiao Yong, Wu Song, Yang Zhaohui, Zheng Yue, Zhao Feng. Isolation and Identification of Electrochemically Active Microorganisms [J]. Progress in Chemistry, 2013, 25(10): 1771-1780.
[14] Li Peng, Sun Yanping* . Positive Electrodes of Non-Aqueous Rechargeable Lithium-Oxygen Batteries [J]. Progress in Chemistry, 2012, 24(12): 2457-2471.
[15] Zhang Dong, Zhang Cunzhong*, Mu Daobin, Wu Borong, Wu Feng . Review on Lithium-Air Batteries [J]. Progress in Chemistry, 2012, 24(12): 2472-2482.