中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (04): 633-641 DOI: 10.7536/PC121059 Previous Articles   Next Articles

• Review •

Biomineralization: One Promising Bridge between Inorganic Chemistry and Biomedicine

Wang Ben1,2, Tang Ruikang*1,3   

  1. 1. Department of Chemistry, Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou 310027, China;
    2. College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China;
    3. Qiushi Academy of Advanced Studies, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
PDF ( 1234 ) Cited
Export

EndNote

Ris

BibTeX

Biomineralization refers to the processes by which organisms form minerals. The control exerted by many organisms over mineral formation distinguishes these processes from abiotic mineralization. In living organisms, nanoscale building blocks combine into self-assembled biominerals under the control of an organic matrix. Biomineralization, especially mineralization of unicellular organisms, physiologic and pathological mineralization, plays a vital role in biology and materials research and could offer a variety of inspirations for biomaterials design and biomedical engineering. As the basic building blocks of biological hard tissues such as bone, dentin, and enamel, hydroxyapatite (HAP) nanoparticles play an important role in the construction of biominerals. As analogues of biological units, nano-HAP can be used as ideal biomaterials due to their nice biocompatibility and bone/enamel integration. The construction of nanostructured calcium phosphates is highlighted in bone/tooth hard tissue engineering. Inspired by unicellular organisms, single cell and virus were entrapped in a biomimetic mineral shell and were endowed with enhanced resistance abilities in the hostile environment. Several ongoing works and related proceedings in this fields are highlighted in this article. The perspective from biomineralization to biomedical research including bone and teeth repair, cellular (virus) shell engineering are illustrated. As the bridge of inorganic chemistry and biomedicine, biomineralization is the well of knowledge for hard tissue repair, the guiding principle for preventing disease of pathological mineralization, the inspiration for cell interfacial engineering, and need to be exploited adequately.

Contents
1 Introduction
1.1 The summary of biomineralization
1.2 Calcium phosphate
2 Biomedical engineering inspired by biomineralization
2.1 Bone and teeth repair
2.2 Cellular (virus) shell engineering
3 Conclusions and outlook

CLC Number: 

[1] Lowenstam H A, Weiner S. On Biomineralization. New York: Oxford University Press, 1989
[2] Wang L, Nancollas G H. Chem. Rev., 2008, 108, 4628-4669
[3] Brown W E, Eidelman N, Tomazic, B. Adv. Dent. Res. 1987, 1: 306-313
[4] Legeros R Z, Daculsi G, Orly I, Abergas T, Torres W. Scanning Microscopy, 1989, 3: 129-138
[5] Johnsson M S A, Nancollas G H. Crit. Rev. Oral. Biol. M., 1992, 3: 61-82
[6] Weiner S, Wagner H D. Annu. Rev. Mater. Sci., 1998, 28: 271-298
[7] Hartgerink J D, Beniash E, Stupp S I. Science, 2001, 294: 1684-1688
[8] Lakes R. Nature, 1993, 361: 511-515
[9] Meyers M A, Chen P Y, Lin A Y M, Seki Y. Progress in Materials Science, 2008, 53: 1-206
[10] Daculsi G, Kerebel B. J. Ultrastruct. Res., 1978, 65: 163-172
[11] Busch S, Schwarz U, Kniep R. Chem. Mater., 2001, 13: 3260-3271
[12] Dorozhkin S V, Epple M. Angew. Chem. Int. Ed., 2002, 41: 3130-3146
[13] Yuan H, Fernandes H, Habibovic P, de Boer J, Barradas A M C, de Ruiter A, Walsh W R, van Blitterswijk C A, de Bruijn J D. Proc. Natl. Acad. Sci. USA, 2010, 107: 13614-13619
[14] Langer R, Vacanti J. P. Science, 1993, 260: 920-926
[15] Griffith L G, Naughton G. Science, 2002, 295: 1009-1014
[16] Aumailley M, Gayraud B. J. Mol. Med., 1998, 76: 253-265
[17] Ryadnov M G, Woolfson D N. Nat. Mater., 2003, 2: 329-332
[18] Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky A J. Proc. Natl. Acad. Sci. USA, 2002, 99: 9996-10001
[19] Stevens M M, George J. H. Science, 2005, 310: 1135-1138
[20] Du C, Falini G, Fermani S, Abbott C, Moradian-Oldak J. Science, 2005, 307: 1450-1454
[21] Cai Y R, Liu Y K, Yan W Q, Hu Q H, Tao J H, Zhang M, Shi Z L, Tang R K. J. Mater. Chem., 2007, 17: 3780-3787
[22] Tang R, Wang L, Orme C A, Bonstein T, Bush P J, Nancollas G H. Angew. Chem., 2004, 116: 2751-2755
[23] Hu Q, Tan Z, Liu Y, Tao J, Cai Y, Zhang M, Pan H. J. Mater. Chem., 2007, 17: 4690-4698
[24] Li L, Mao C, Wang J, Xu X, Pan H, Deng Y, Gu X, Tang R. Adv. Mater., 2011, 23: 4695-4701
[25] Li L, Pan H, Tao J, Xu X, Mao C, Gu X, Tang R. J. Mater. Chem., 2008, 18: 4079-4084
[26] Tao J, Pan H, Zeng Y, Xu X, Tang R. J. Phys. Chem. B, 2007, 111: 13410-13418
[27] Sole R V, Rasmussen S, Bedau M. Philos T. R. Soc. B, 2007, 362: 1725-1725
[28] Roodbeen R, van Hest J. BioEssays, 2009, 31: 1299-1308
[29] Arias J, Arias J, Fernandez M. in Handbook of Biomineralization: Biomimetic and Bioinspired Chemistry (Behrens P, Baeuerlein E, Eds.). Wiley-VCH: Weinheim, 2007, 109-117
[30] Karlsson H L, Cronholm P, Gustafsson J, Möller L. Chem. Res. Toxicol., 2008, 21: 1726-1732
[31] Hamm C E, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V. Nature, 2003, 421: 841-843
[32] Wang B, Liu P, Jiang W G, Pan H H, Xu X R, Tang R K. Angew. Chem. Int. Ed., 2008, 47: 3560-3564
[33] Wang B, Liu P, Tang R K. BioEssays, 2010, 32: 698-708
[34] Wang G C, Wang L J, Liu P, Yan Y, Xu X R, Tang R K. ChemBioChem, 2010, 11: 2368-2373
[35] Yang S H, Lee K B, Kong B, Kim J H, Kim H S, Choi I S. Angew. Chem. Int. Ed., 2009, 48: 9160-9163
[36] Yang S H, Ko E H, Jung Y H, Choi I. S. Angew. Chem. Int. Ed., 2011, 50: 6115-6118
[37] Yang S H, Ko E H, Choi I S. Langmuir, 2011, 28, 2151-2155
[38] Yang S H, Lee T, Seo E, Ko E H, Choi I S, Kim B S. Macromol. Biosci., 2012, 12: 61-66
[39] Yang S H, Kang S M, Lee K B, Chung T D, Lee H, Choi I S. J. Am. Chem. Soc., 2011, 133: 2795-2797
[40] Fakhrullin R F, Minullina R T. Langmuir, 2009, 25: 6617-6621
[41] Fakhrullin R F, Garcia-Alonso J, Paunov V N. Soft Matter, 2010, 6: 391-397
[42] Fakhrullin R F, Zamaleeva A I, Morozov M V, Tazetdinova D I, Alimova F K, Hilmutdinov A K, Zhdanov R I, Kahraman M, Culha M. Langmuir, 2009, 25: 4628-4634
[43] Fakhrullin R F, Zamaleeva A I, Minullina R T, Konnova S A, Paunov V N. Chem. Soc. Rev., 2012, 41: 4189-4206
[44] Ma X, Chen H, Yang L, Wang K, Guo Y, Yuan L. Angew. Chem. Int. Ed., 2011, 50: 7414-7417
[45] Wang B, Liu P, Tang Y, Pan H, Xu X, Tang R. PLoS ONE 2010, 5: e9963. doi:10.1371/journal.pone.0009963
[46] Xu X, Wang B, Tang R. ChemSusChem, 2011, 4: 1439-1446
[47] Wang X, Deng Y, Li S, Wang G, Qin E, Xu X, Tang R, Qin C. Adv. Healthcare Mater., 2012, 1: 443-449
[48] Wang X, Deng Y, Shi H, Mei Z, Zhao H, Xiong W, Liu P, Zhao Y, Qin C, Tang R. Small, 2010, 6: 351-354
[49] Wang G, Li X, Mo L, Song Z, Chen W, Deng Y, Zhao H, Qin E, Qin C, Tang R. Angew. Chem. Int. Ed., 2012, 51, 10576-10579

[1] Yanhua Sang, Haihua Pan, Ruikang Tang. Condensed-Matter Chemistry in Biomineralization [J]. Progress in Chemistry, 2020, 32(8): 1100-1114.
[2] Guangyan Qing, Zhonghui Chen, Guangyan Qing*. Interfacial Interaction on Phospholipid Membrane [J]. Progress in Chemistry, 2018, 30(7): 888-901.
[3] Hongxi Wang, Yuting Xiong, Guangyan Qing*, Taolei Sun*. Biomolecular Responsive Polymer Materials [J]. Progress in Chemistry, 2017, 29(4): 348-358.
[4] Yang Haocheng, Chen Yifu, Ye Chen, Wan Lingshu, Xu Zhikang. Advances in Porous Organic-Inorganic Composite Membranes [J]. Progress in Chemistry, 2015, 27(8): 1014-1024.
[5] Chen Yangjun, Liu Xiangsheng, Wang Haibo, Wang Yin, Jin Qiao, Ji Jian. Zwitterions in Surface Engineering of Biomedical Nanoparticles [J]. Progress in Chemistry, 2014, 26(11): 1849-1858.
[6] Pan Yu, Li Na, Zhou Runhong, Zhao Min. Nano-Magnetosomes in Magnetotactic Bacteria [J]. Progress in Chemistry, 2013, 25(10): 1781-1794.
[7] Ouyang Jianming*, Zhang Guangna, Wang Fengxin, Li Junjun. Nucleation, Growth, and Aggregation of Nanocrystallites in Urine of Calcium Oxalate Stone Patients as well as Kidney Stone Formation [J]. Progress in Chemistry, 2013, 25(04): 642-649.
[8] Liu Chuang, Wang Yuangui, Geng Jiaqing, Jiang Zhongyi, Yang Dong. Biosynthesis of Inorganic Nanoparticles [J]. Progress in Chemistry, 2011, 23(12): 2510-2521.
[9] Wu Congmeng, Wang Xiaoqiang, Zhao Kang, Cao Meiwen, Xu Hai, Lü Jianren. AFM Study of Calcite Growth and Dissolution on the (104) Face [J]. Progress in Chemistry, 2011, 23(01): 107-124.
[10] Ouyang Jianming, Yang Rue, Tan Jin. Effect of Renal Epithelial Cell After Injury on Biomineralization of Calcium Oxalate [J]. Progress in Chemistry, 2010, 22(08): 1665-1671.
[11] Cai Guobin|Guo Xiaohui|Yu Shuhong**. Polymer Controlled Biomimetic Mineralization [J]. Progress in Chemistry, 2008, 20(0708): 1001-1014.
[12] Xu Xurong|Cai Anhua|Liu Rui|Pan Haihua|Tang Ruikang**. Amorphous Calcium Carbonate in Biomineralization [J]. Progress in Chemistry, 2008, 20(01): 54-59.
[13] Ou Yangjianming**. Research Progress in Lattice Matching and Electrostatic Compatibility in Growth of Biominerals Induced by Monolayers [J]. Progress in Chemistry, 2005, 17(05): 931-937.
[14] Ouyang Jianming**. Biominerals and Their Mineralization Process [J]. Progress in Chemistry, 2005, 17(04): 749-756.
[15] Ou Yangjianming**,Chen Dezhi. The Growth of Biomineral Crystals Modulated by Self-Assembled Monolayers [J]. Progress in Chemistry, 2005, 17(03): 563-572.