中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (06): 1052-1060 DOI: 10.7536/PC121050 Previous Articles   

• Review •

Peptide-Mediated Nano Drug Delivery System for Tumor Targeting

Yang Yiyi1,2, Yan Zhiqiang2,3*, Zhong Jian2, He Dannong1,2*, Lu Weiyue3   

  1. 1. College of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. National Engineering Research Center for Nanotechnology, Shanghai 200241, China;
    3. Key Laboratory of Smart Drug Delivery, Ministry of Education and People's Liberation Army, School of Pharmacy, Fudan University, Shanghai 201203, China
  • Received: Revised: Online: Published:
PDF ( 1318 ) Cited
Export

EndNote

Ris

BibTeX

Nano drug delivery system for tumor targeting is composed of drugs for tumor diagnosis or treatment and nanocarriers with targetability to tumor tissues by taking advantage of the physiological and pathological characteristics of tumor. Peptide-mediated nano drug delivery system is a relatively new research direction in the tumor targeted delivery field. In this review, we introduce four important development courses in the research direction: single functional targeted, dual functional targeted, tumor-penetrating and environment-sensitive targeted nano drug delivery system, and the corresponding design principles and typical examples. In addition, the advantages and disadvantages of the peptide-mediated nano drug delivery system are discussed. Finally, in view of the current dilemma of active targeting drug delivery systems, we propose a novel tumor-targeted drug delivery strategy: the “systematic targeting” strategy. Temporally, the systematic targeting drug delivery system can stably penetrate through a series of barriers, and efficiently release the drug at the target site. Spatially, it not only kill the tumor cells, but also destroy the tumor microenvironment which is essential to the tumor growth. Ultimately, it can realize the systematic targeting therapy for tumors. With the development of related disciplines and multi-disciplinary subjects, peptide-mediated nano drug delivery system for tumor targeting will play a more important role in cancer therapy. Contents
1 Introduction
2 The physiological basis for tumor targeting
3 Peptide-mediated nano drug delivery system for tumor targeting
3.1 Single functional targeted nano drug delivery system
3.2 Dual functional targeted nano drug delivery system
3.3 Tumor penetrating nano drug delivery system
3.4 Environment-sensitive targeted nano drug delivery system
4 Strengths and weaknesses of peptide-mediated delivery system for tumor targeting
5 Summary and outlook

CLC Number: 

[1] Zhou Y, Kopecek J. J. Drug. Target., 2013, 21: 1-26
[2] Folkman J. N. Engl. J. Med., 1971, 285: 1182-1186
[3] Rezaei S J, Nabid M R, Niknejad H, Entezami A A. Int. J. Pharm., 2012, 437: 70-79
[4] Liu D, Liu F, Liu Z, Wang L, Zhang N. Mol. Pharm., 2011, 8: 2291-2301
[5] McQuade P, Knight L C, Welch M J. Bioconjug. Chem., 2004, 15: 988-996
[6] Jubeli E, Moine L, Nicolas V, Barratt G. Int. J. Pharm., 2012, 426: 291-301
[7] Fogal V, Zhang L, Krajewski S, Ruoslahti E. Cancer Res., 2008, 68: 7210-7218
[8] Markovsky E, Baabur-Cohen H, Eldar-Boock A, Omer L, Tiram G, Ferber S, Ofek P, Polyak D, Scomparin A, Satchi-Fainaro R. J. Control Release, 2012, 161: 446-460
[9] Danhier F, Feron O, Preat V. J. Control Release., 2010, 148: 135-146
[10] Gao H, Shi W, Freund L B. Proc. Natl. Acad. Sci. U. S. A., 2005, 102: 9469-9474
[11] Santoro L, Boutaleb S, Garambois V, Bascoul-Mollevi C, Boudousq V, Kotzki P O, Pelegrin M, Navarro-Teulon I, Pelegrin A, Pouget J P. J. Nucl. Med., 2009, 50: 2033-2041
[12] Dagar S, Krishnadas A, Rubinstein I, Blend M J, Onyuksel H. J. Control Release, 2003, 91: 123-133
[13] Zhan C, Gu B, Xie C, Li J, Liu Y, Lu W. J. Control Release, 2010, 143: 136-142
[14] Zhang Y, Yang M, Park J H, Singelyn J, Ma H, Sailor M J, Ruoslahti E, Ozkan M, Ozkan C. Small, 2009, 5: 1990-1996
[15] Maeda N, Takeuchi Y, Takada M, Sadzuka Y, Namba Y, Oku N. J. Control Release, 2004, 100: 41-52
[16] Lu Z X, Liu L T, Qi X R. Int. J. Nanomed., 2011, 6: 1661-1673
[17] Holig P, Bach M, Volkel T, Nahde T, Hoffmann S, Muller R, Kontermann R E. Protein Eng. Des. Sel., 2004, 17: 433-441
[18] Pastorino F, Brignole C, Marimpietri D, Cilli M, Gambini C, Ribatti D, Longhi R, Allen T M, Corti A, Ponzoni M. Cancer Res., 2003, 63: 7400-7409
[19] Kondo M, Asai T, Katanasaka Y, Sadzuka Y, Tsukada H, Ogino K, Taki T, Baba K, Oku N. Int. J. Cancer., 2004, 108: 301-306
[20] Yan Z, Wang F, Wen Z, Zhan C, Feng L, Liu Y, Wei X, Xie C, Lu W. J. Control Release, 2012, 157: 118-125
[21] Yan Z, Zhan C, Wen Z, Feng L, Wang F, Liu Y, Yang X, Dong Q, Liu M, Lu W. Nanotechnology, 2011, 22: art. no. 415103
[22] Xin H, Jiang X, Gu J, Sha X, Chen L, Law K, Chen Y, Wang X, Jiang Y, Fang X. Biomaterials, 2011, 32: 4293-4305
[23] Mei D, Gao H, Gong W, Pang Z, Jiang X, Chen J. African Journal of Pharmacy and Pharmacology, 2011, 5: 409-414
[24] Derfus A M, Chen A A, Min D H, Ruoslahti E, Bhatia S N. Bioconjug. Chem., 2007, 18: 1391-1396
[25] Hu Q, Gu G, Liu Z, Jiang M, Kang T, Miao D, Tu Y, Pang Z, Song Q, Yao L, Xia H, Chen H, Jiang X, Gao X, Chen J. Biomaterials, 2013, 34: 1135-1145
[26] Sugahara K N, Teesalu T, Karmali P P, Kotamraju V R, Agemy L, Girard O M, Hanahan D, Mattrey R F, Ruoslahti E. Cancer Cell, 2009, 16: 510-520
[27] Garg A, Kokkoli E. Curr. Pharm. Biotechnol., 2011, 12: 1135-1143
[28] Negussie A H, Miller J L, Reddy G, Drake S K, Wood B J, Dreher M R. J. Control Release, 2010, 143: 265-273
[29] Moura V, Lacerda M, Figueiredo P, Corvo M L, Cruz M E, Soares R, de Lima M C, Simoes S, Moreira J N. Breast Cancer Res. Treat., 2012, 133: 61-73
[30] Ruoslahti E, Bhatia S N, Sailor M J. J. Cell. Biol., 2010, 188: 759-768
[31] Ran S, Volk L, Hall K, Flister M J. Pathophysiology, 2010, 17: 229-251
[32] Laakkonen P, Zhang L, Ruoslahti E. Ann. N. Y. Acad. Sci., 2008, 1131: 37-43
[33] Xin H, Sha X, Jiang X, Zhang W, Chen L, Fang X. Biomaterials, 2012, 33: 8167-8176
[34] Jain R K. Annu. Rev. Biomed. Eng., 1999, 1: 241-263
[35] Olive K P, Jacobetz M A, Davidson C J, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben M A, Caldwell M E, Allard D, Frese K K, Denicola G, Feig C, Combs C, Winter S P, Ireland-Zecchini H, Reichelt S, Howat W J, Chang A, Dhara M, Wang L, Ruckert F, Grutzmann R, Pilarsky C, Izeradjene K, Hingorani S R, Huang P, Davies S E, Plunkett W, Egorin M, Hruban R H, Whitebread N, McGovern K, Adams J, Iacobuzio-Donahue C, Griffiths J, Tuveson D A. Science, 2009, 324: 1457-1461
[36] Primeau A J, Rendon A, Hedley D, Lilge L, Tannock I F. Clin. Cancer. Res., 2005, 11: 8782-8788
[37] Teesalu T, Sugahara K N, Kotamraju V R, Ruoslahti E. Proc. Natl. Acad. Sci. U. S. A., 2009, 106: 16157-16162
[38] Torchilin V. Eur. J. Pharm. Biopharm., 2009, 71: 431-444
[39] Sawant R M, Hurley J P, Salmaso S, Kale A, Tolcheva E, Levchenko T S, Torchilin V P. Bioconjug. Chem., 2006, 17: 943-949
[40] Li Y, Pan S, Zhang W, Du Z. Nanotechnology, 2009, 20: art. no. 065104
[41] Bae Y H. J. Control Release, 2009, 133: 2-3
[42] Lo A, Lin C T, Wu H C. Mol. Cancer Ther., 2008, 7: 579-589
[43] Gu F, Zhang L, Teply B A, Mann N, Wang A, Radovic-Moreno A F, Langer R, Farokhzad O C. Proc. Natl. Acad. Sci. U. S. A., 2008, 105: 2586-2591
[44] Ng C K, Pemberton H N, Reis-Filho J S. Expert. Rev. Anticancer. Ther., 2012, 12: 1021-1032
[45] Zhan C, Zhao L, Wei X, Wu X, Chen X, Yuan W, Lu W Y, Pazgier M, Lu W. J. Med. Chem., 2012, 55: 6237-6241
[46] Pujals S, Sabido E, Tarrago T, Giralt E. Biochem. Soc. Trans., 2007, 35: 794-796
[47] Pienta K J, McGregor N, Axelrod R, Axelrod D E. Transl. Oncol., 2008, 1: 158-164
[48] Kareva I. Transl. Oncol., 2011, 4: 266-270
[49] Pong W W, Gutmann D H. Oncogene, 2011, 30: 1135-1146
[50] Duan S, Yuan W, Wu F, Jin T. Angewandte Chemie, 2012, 51: 7938-7941

[1] Xinyu Wang, Fuping Zhao, Ru Zhang, Shengnan Liu, Qingzhi Gao. Progress of the Development of Hypoxia Inducible Factor-1 Small Molecule Inhibitors as Antitumor Agents* [J]. Progress in Chemistry, 0, (): 201141-201141.
[2] Tianzhi Dai, Dequn Sun. Research of Anti-TB Active Compounds [J]. Progress in Chemistry, 2018, 30(11): 1784-1802.
[3] Guo Jian, He Yun, Ye Xin-Shan. Design and Discovery of Sialyltransferase Inhibitors [J]. Progress in Chemistry, 2016, 28(11): 1712-1720.
[4] Zhan Peng, Wang Xueshun, Liu Xinyong. Contemporary Molecular Targeted Drug in the Context of “Precision Medicine”: An Attempting Discussion of “Precision Drug Design” [J]. Progress in Chemistry, 2016, 28(9): 1363-1386.
[5] Mei Yicheng, Yang Baowei. Application of Amide Bioisosteres in the Optimization of Lead Compounds [J]. Progress in Chemistry, 2016, 28(9): 1406-1416.
[6] Yuan Shuo, Sun Dequn. The Conformational Restriction of β-Peptidomimetics in Drug Design [J]. Progress in Chemistry, 2016, 28(7): 1084-1098.
[7] Lu Jinrong, Ju Yong. Supramolecular Gels Based on Natural Product-Triterpenoids [J]. Progress in Chemistry, 2016, 28(2/3): 260-268.
[8] Hou hui, Sun Dequn. Conformational Restriction of Peptidomimetics in Drug Design [J]. Progress in Chemistry, 2015, 27(9): 1260-1274.
[9] Wang Lu, Zhou Baibin, Liu Jiaren. Anticancer Polyoxometalates [J]. Progress in Chemistry, 2013, 25(07): 1131-1141.
[10] Chen Ping, Jiang Liang, Liu Qiong*, Yang Silin, Song Yun, Ni Jiazuan. Selenoprotein M and Its Effects on Diseases [J]. Progress in Chemistry, 2013, 25(04): 479-487.
[11] Cheng Gong, Wang Zhigang, Liu Yanlin, Zhang Jilin*, Sun Dehui, Ni Jiazuan. Phosphoprotein/Phosphopeptide Enrichment and Analysis Based on Nanostructured Materials [J]. Progress in Chemistry, 2013, 25(04): 620-632.
[12] Zhang Jinchao*, Yang Kangning, Zhang Haisong, Liang Xingjie*. Application Status and Prospect of Carbon-Based Nanomaterials in Biomedical Field [J]. Progress in Chemistry, 2013, 25(0203): 397-408.
[13] Yang Huayan, Xiong Huanming, Yu Shaoning. Quantum Dots-Based Drug Delivery System [J]. Progress in Chemistry, 2012, 24(11): 2234-2246.
[14] Wu Daochun, He Yanping. HCV Non-Nucleoside NS5B Polymerase Inhibitors [J]. Progress in Chemistry, 2012, 24(11): 2255-2267.
[15] Ni Min, Xu Qinqin, Xu Gang, Wang Enjun, Yin Jianzhong. Applications of Supercritical Fluid Transport Technology in Preparation of Controlled-Release Drug Delivery Systems [J]. Progress in Chemistry, 2011, 23(8): 1611-1617.