中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (06): 881-892 DOI: 10.7536/PC121044 Previous Articles   Next Articles

• Review •

Properties and Applications of Choline-Based Deep Eutectic Solvents

Zhang Yingying1,2, Lu Xiaohua1*, Feng Xin1, Shi Yijun1,3, Ji Xiaoyan2   

  1. 1. State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China;
    2. Division of Energy Science/Energy Engineering, Lule University of Technology, Lule 97187, Sweden;
    3. Division of Machine Element, Lule University of Technology, Lule 97187, Sweden
  • Received: Revised: Online: Published:
PDF ( 3724 ) Cited
Export

EndNote

Ris

BibTeX

Choline-based deep eutectic solvents (DESs) are considered as a new class of ionic liquids. Comparing to traditional ionic liquids, choline-based DESs are low-toxic, biodegradable, and the price is generally low, which make them more and more attractive in green chemistry and industrial chemistry. In the current work, the properties of choline-based DESs, such as freezing point, melting point, solubility, viscosity, surface tension and conductivity, were collected and summarized. The dependences of these properties with different factors, such as temperature, mole ratios and water content, and the models which can be used to predict the properties were studied and discussed. The applications of choline-based DESs in the area of lubrication, functional material preparation, electrochemistry, organic synthesis and catalytic conversion of biomass were introduced. Finally, the problems and difficulties in research and applications were illustrated and then prospective was provided. Contents
1 Introduction
2 Properties of choline-based deep eutectic solvents
2.1 Freezing point and melting point
2.2 Solubility
2.3 Viscosity
2.4 Surface tension
2.5 Conductivity
3 Applications of choline-based deep eutectic solvents
3.1 Lubrication
3.2 Preparation of functional materials
3.3 Electrochemistry
3.4 Organic synthesis
3.5 Catalytic conversion of biomass
4 Conclusion and outlook

CLC Number: 

[1] 邓友全(Deng Y Q). 离子液体: 性质、制备与应用(Ionic Liquids: Properties, Preparation and Application), 北京: 中国石化出版社(Beijing: China Petrochemical Press), 2006. 1-8
[2] Galiński M, Lewandowski A, Stpniak I. Electrochim. Acta, 2006, 51: 5567-5580
[3] Ohno H. Electrochemical Aspects of Ionic Liquids, 2nd ed New Jersey: John Wiley & Sons Inc., 2011. 43-64
[4] 张锁江(Zhang S J), 徐春明(Xu C M), 吕兴梅(Lu X M), 周清(Zhou Q). 离子液体与绿色化学(Ionic Liquids and Green Chemistry). 北京: 科学出版社(Beijing: Science Press), 2009. 1-9
[5] Plechkova N V, Seddon K R. Chem. Soc. Rev., 2008, 37: 123-150
[6] Frade R F, Afonso C A. Hum. Exp. Toxicol., 2010, 29: 1038-1054
[7] Abbott A P, Capper G, Davies D L, Munro H L, Rasheed R K, Tambyrajah V. Chem. Commun., 2001, 2010-2011
[8] Abbott A P, Capper G, Davies D L, Rasheed R K, Tambyrajah V. Chem. Commun., 2003, 70-71
[9] Saptharishi L V. Anti-dumping investigation concerning imports of choline chloride from territory of European Union and Peoples Republic of China, (2001-2-22)[2001-12-26] http: //commercenicin/adfin_choline_chloride_china&euhtm
[10] Abbott A P, Boothby D, Capper G, Davies D L, Rasheed R K. J. Am. Chem. Soc., 2004, 126: 9142-9147
[11] 韦露(Wei L), 樊友军(Fan Y J). 化学通报(Chemistry), 2011, 74: 333-339
[12] Abbott A P, Capper G, McKenzie K J, Ryder K S. J Electroanal. Chem., 2007, 599: 288-294
[13] Rodgers R D, Seddon K R. Ionic Liquids as Green Solvents: Progress and Prospects. Washington, DC. American Chemical Society, 2003. 439-452
[14] Frank E, Abbott A P, Douglas R M. Electrodeposition from ionic liquids. Weinheim: Wiley-VCH, 2008. 83-123
[15] Li X Y, Hou M Q, Han B X, Wang X L, Zou L Z. J. Chem. Eng. Data, 2008, 53: 548-550
[16] Li W J, Zhang Z F, Han B X, Hu S Q, Song J L, Xie Y, Zhou X S. Green Chem., 2008, 10: 1142-1145
[17] Zhu A L, Jiang T, Han B X, Zhang J C, Xie Y, Ma X M. Green Chem., 2007, 9: 169-172
[18] Hu S Q, Jiang T, Zhang Z F, Zhu A L, Han B X, Song J L, Xie Y, Li W. J. Tetrahedron Lett., 2007, 48: 5613-5617
[19] Li X Y, Hou M Q, Zhang Z F, Han B X, Yang G Y, Wang X L, Zou L Z. Green Chem., 2008, 10: 879-884
[20] Hu S Q, Zhang Z F, Zhou Y X, Song J L, Fan H L, Han B X. Green Chem., 2009, 11: 873-877
[21] Su W C, Wong D S H, Li M H. J. Chem. Eng. Data, 2009, 54: 1951-1955
[22] Jhong H R, Wong D S H, Wan C C, Wang Y Y, Wei T C. Electrochem. Commun., 2009, 11: 209-211
[23] Zhou Q, Song Y T, Yu Y H, He H Y, Zhang S J. J. Chem. Eng. Data, 2010, 55: 1105-1108
[24] Duan Z Y, Gu Y L, Deng Y Q. Catal. Commun., 2006, 7: 651-656
[25] Zhang Q H, De Oliveira Vigier K, Royer S, Jerome F. Chem. Soc. Rev., 2012, 41: 7108-7146
[26] Carriazo D, Serrano M C, Gutierrez M C, Ferrer M L, del Monte F. Chem. Soc. Rev., 2012, 41: 4996-5014
[27] Abbott A P, McKenzie K J. Phys. Chem. Chem. Phys., 2006, 8: 4265-4279
[28] Abbott A P, Ryder K S, König U. Trans. Inst. Met. Finish., 2008, 86: 196-204
[29] 胡素琴(Hu S Q), 张晓东(Zhang X D), 许敏(Xu M), 孙立(Sun L). 化学进展(Progress in Chemistry), 2011, 23: 731-738
[30] de María P D, Maugeri Z. Curr. Opin. Chem. Biol., 2011, 15: 220-225
[31] Abbott A P, Capper G, Davies D L, Rasheed R. Inorg. Chem., 2004, 43: 3447-3452
[32] Wang H Y, Jing Y, Wang X H, Yao Y, Jia Y Z. J. Mol. Liq., 2011, 163: 77-82
[33] Morrison H G, Sun C C, Neervannan S. Int. J. Pharm., 2009, 378: 136-139
[34] Abbott A P, Davies D L, Capper G, Rasheed R K, Tambyrajah V. WO02/26701A2, 2002
[35] Parnham E R, Drylie E A, Wheatley P S, Slawin A M Z, Morris R E. Angew. Chem. Int. Ed., 2006, 45: 4962-4966
[36] Leron R B, Li M H. Thermochim. Acta, 2012, 530: 52-57
[37] Hou Y W, Gu Y Y, Zhang S M, Yang F, Ding H M, Shan Y K. J. Mol. Liq., 2008, 143: 154-159
[38] Babarao R, Jianwen J, Woodcock L V. Ind. Eng. Chem. Res., 2010, 50: 234-238
[39] Woodcock L V. Ind. Eng. Chem. Res., 2010, 50: 227-233
[40] Krossing I, Slattery J M, Daguenet C, Dyson P J, Oleinikova A, Weingärtner H. J. Am. Chem. Soc., 2006, 128: 13427-13434
[41] Katritzky A R, Jain R, Lomaka A, Petrukhin R, Karelson M, Visser A E, Rogers R D. J. Chem. Inf. Comp. Sci., 2002, 42: 225-231
[42] Eike D M, Brennecke J F, Maginn E J. Green Chem., 2003, 5: 323-328
[43] López-Martin I, Burello E, Davey P N, Seddon K R, Rothenberg G. ChemPhysChem, 2007, 8: 690-695
[44] Carrera G V S M, Branco L C, Aires-de-Sousa J, Afonso C A M. Tetrahedron, 2008, 64: 2216-2224
[45] Preiss U, Bulut S, Krossing I. J. Phys. Chem. B, 2010, 114: 11133-11140
[46] Huo Y, Xia S, Zhang Y, Ma P. Ind. Eng. Chem. Res., 2009, 48: 2212-2217
[47] Shariati A, Peters C J. J. Supercrit. Fluids, 2003, 25: 109-117
[48] Kroon M C, Karakatsani E K, Economou I G, Witkamp G J, Peters C J. J. Phys. Chem. B, 2006, 110: 9262-9269
[49] Qin Y, Prausnitz J M. Ind. Eng. Chem. Res., 2006, 45: 5518-5523
[50] Camper D, Scovazzo P, Koval C, Noble R. Ind. Eng. Chem. Res., 2004, 43: 3049-3054
[51] Scovazzo P, Camper D, Kieft J, Poshusta J, Koval C, Noble R. Ind. Eng. Chem. Res., 2004, 43: 6855-6860
[52] Wu X P, Liu Z P, Wang W C. Acta Phys. Chim. Sin., 2005, 21: 1138-1142
[53] Lopes J N C, Deschamps J, Padua A A H. Ionic Liquids IIIA: Fundamentals, Progress, Challenges and Opportunities. Washington, DC: American Chemical Society, 2005. 335-350
[54] Urukova I, Vorholz J, Maurer G. J. Phys. Chem. B, 2005, 109: 12154-12159
[55] Abbott A P, Capper G, Davies D L, Rasheed R K, Shikotra P. Inorg. Chem., 2005, 44: 6497-6499
[56] Abbott A P, Capper G, Davies D L, McKenzie K J, Obi S U. J. Chem. Eng. Data, 2006, 51: 1280-1282
[57] Wang X D, Wu W Y, Tu G F, Jiang K X T. Nonferr Metal Soc., 2010, 20: 2032-2036
[58] Stanton M K, Bak A. Crystal Growth & Design, 2008, 8: 3856-3862
[59] Ciocirlan O, Iulian O, Croitoru O. Rev. Chim., 2010, 61: 721-723
[60] Shin H Y, Matsumoto K, Higashi H, Iwai Y, Arai Y. J. Supercrit. Fluids, 2001, 21: 105-110
[61] Abbott A P, Capper G, Davies D L, Rasheed R K. Chem. Eur. J., 2004, 10: 3769-3774
[62] Abbott A P, Capper G, Gray S. ChemPhysChem, 2006, 7: 803-806
[63] Abbott A P, Harris R C, Ryder K S. J. Phys. Chem. B, 2007, 111: 4910-4913
[64] Branco L C, Rosa J N, Ramos J J M, Afonso C A M. Chem. Eur. J., 2002, 8: 3671-3677
[65] Shaukat S, Buchner R. J. Chem. Eng. Data, 2011, 56: 4944-4949
[66] Bockris J O M, Reddy A K N. Modern Electrochemistry, New York: Plenum Press, 1970. 771-1031
[67] Blander M. Molten Salt Chemistry 1 nd ed., New York: Interscience Publishers, 1964. 109-125
[68] Frenkel J. Kinetic Theory of Liquids, Oxford: Clarendon Press, 1946
[69] Fürth R. Proc Cambridge Phil Soc, 1941, 37: 252-275
[70] Fürth R. Proc Cambridge Phil Soc, 1941, 37: 281-290
[71] Glasstone S, Laidler K J, Eyring H. The theory of rate processes: the kinetics of chemical reactions, viscosity, diffusion and electrochemical phenomena, New York: McGraw-Hill, 1941. 480-484
[72] Popescu A M, Constantin V, Florea A, Baran A. Rev. Chim., 2011, 62: 531-537
[73] Abbott A P, Capper G, McKenzie K J, Glidle A, Ryder K S. Phys. Chem. Chem. Phys., 2006, 8: 4214-4221
[74] Abbott A P, Harris R C, Ryder K S, D'Agostino C, Gladden L F, Mantle M D. Green Chem., 2011, 13: 82-90
[75] Yu Y H, Soriano A N, Li M H. J. Taiwan Inst. Chem. Eng., 2009, 40: 205-212
[76] Lawes S D A, Hainsworth S V, Blake P, Ryder K S, Abbott A P. Tribol. Lett., 2010, 37: 103-110
[77] Parnham E R, Morris R E. Acc. Chem. Res., 2007, 40: 1005-1013
[78] Taubert A. Acta Chim. Slov., 2005, 52: 183-186
[79] Freudenmann D, Wolf S, Wolff M, Feldmann C. Angew. Chem. Int. Ed., 2011, 50: 11050-11060
[80] Morris R E. Chem. Commun., 2009, 2990-2998
[81] Paraknowitsch J P, Thomas A. Macromol. Chem. Phys., 2012, 213: 1132-1145
[82] Ma Z, Yu J, Dai S. Adv. Mater., 2010, 22: 261-285
[83] Cooper E R, Andrews C D, Wheatley P S, Webb P B, Wormald P, Morris R E. Nature, 2004, 430: 1012-1016
[84] Drylie E A, Wragg D S, Parnham E R, Wheatley P S, Slawin A M Z, Warren J E, Morris R E. Angew. Chem. Int. Ed., 2007, 46: 7839-7843
[85] Liao J H, Wu P C, Bai Y H. Inorg. Chem. Commun., 2005, 8: 390-392
[86] Liu L, Kong Y, Xu H, Li J P, Dong J X, Lin Z. Microporous and Mesoporous Mater., 2008, 115: 624-628

[87] Jhang P C, Chuang N T, Wang S L Angew. Chem. Int. Ed., 2010, 49: 4200-4204

[88] Jhang P C, Yang Y C, Lai Y C, Liu W R, Wang S L. Angew. Chem. Int. Ed., 2009, 48: 742-745

[89] Lin Z, Wragg D S, Lightfoot P, Morris R E. Dalton Trans., 2009, 5287-5289

[90] Sheu C Y, Lee S F, Lii K H. Inorg. Chem., 2006, 45: 1891-1893

[91] Tang M F, Liu Y H, Chang P C, Liao Y C, Kao H M, Lii K H. Dalton Trans., 2007, 4523-4528

[92] Wang S M, Li Y W, Feng X J, Li Y G, Wang E B. Inorg. Chim. Acta, 2010, 363: 1556-1560

[93] Zhang J, Bu J T, Chen S, Wu T, Zheng S, Chen Y, Nieto R A, Feng P, Bu X. Angew. Chem. Int. Ed., 2010, 49: 8876-8879

[94] Kim S H, Yang S T, Kim J, Ahn W S. Bull. Korean Chem. Soc., 2011, 32: 2783-2786

[95] Shi F N, Trindade T, Rocha J O, Paz F A A. Crystal Growth & Design, 2008, 8: 3917-3920

[96] Liao H G, Jiang Y X, Zhou Z Y, Chen S P, Sun S G. Angew. Chem. Int. Ed., 2008, 47: 9100-9103

[97] Chirea M, Freitas A, Vasile B S, Ghitulica C, Pereira C M, Silva F. Langmuir, 2011, 27: 3906-3913

[98] Gutiérrez M C, Rubio F, del Monte F. Chem. Mater., 2010, 22: 2711-2719

[99] Gutiérrez M C, Carriazo D, Tamayo A, Jiménez R, Picó F, Rojo J M, Ferrer M L, del Monte F. Chem. Eur. J., 2011, 17: 10533-10537

[100] Smith E L, Fullarton C, Harris R C, Saleem S, Abbott A P, Ryder K S. Trans. Inst. Met. Finish., 2010, 88: 285-291

[101] Gómez E, Cojocaru P, Magagnin L, Valles E J. Electroanal. Chem., 2011, 658: 18-24

[102] Golgovici F, Cojocaru A, Agapescu C, Jin Y, Nedelcu M, Wang W, Visan T. Stud. Univ. Babes-Bolyai Chem., 2009, 54: 175-188

[103] Abbott A P, El Ttaib K, Ryder K S, Smith E L. Trans. Inst. Met. Finish., 2008, 86: 234-240

[104] Shivagan D D, Dale P J, Samantilleke A P, Peter L M. Thin Solid Films, 2007, 515: 5899-5903

[105] Abbott A P, El Ttaib K, Frisch G, McKenzie K J, Ryder K S. Phys. Chem. Chem. Phys., 2009, 11: 4269-4277

[106] Martis P, Dilimon V S, Delhalle J, Mekhalif Z. Electrochim. Acta, 2010, 55: 5407-5410

[107] Gu C D, Tu J P. Langmuir, 2011, 27: 10132-10140

[108] Chan C P, Lam H, Surya C. Sol. Energy Mater. Sol. Cells, 2010, 94: 207-211

[109] Abbott A P, Capper G, Davies D L, Rasheed R H, Tambyrajah V. Green Chem., 2002, 4: 24-26

[110] Abbott A P, Bell T J, Handa S, Stoddart B. Green Chem., 2005, 7: 705-707

[111] Morales R C, Tambyrajah V, Jenkins P R, Davies D L, Abbott A P. Chem. Commun., 2004, 158-159

[112] Sunitha S, Kanjilal S, Reddy P S, Prasad R B N. Tetrahedron Lett., 2007, 48: 6962-6965

[113] Xie Y T, Hou R S, Wang H M, Kang I J, Chen L C. J. Chin. Chem. Soc., 2009, 56: 839-842

[114] Pawar P M, Jarag K J, Shankarling G S. Green Chem., 2011, 13: 2130-2134

[115] Singh B, Lobo H, Shankarling G. Catal. Lett., 2011, 141: 178-182

[116] Sonawane Y A, Phadtare S B, Borse B N, Jagtap A R, Shankarling G S. Org. Lett., 2010, 12: 1456-1459

[117] Azizi N, Manocheri Z. Res. Chem. Intermed., 2012, 38: 1495-1500

[118] Hu S, Zhang Z, Zhou Y, Han B, Fan H, Li W, Song J, Xie Y. Green Chem., 2008, 10: 1280-1283

[119] Zhao H, Baker G A, Holmes S. Org. Biomol. Chem., 2011, 9: 1908-1916

[120] Azizi N, Batebi E, Bagherpour S, Ghafuri H. RSC Advances, 2012, 2: 2289-2293

[121] Gutiérrez M C, Ferrer M L, Yuste L, Rojo F, Monte F D. Angew. Chem. Int. Ed., 2010, 49: 2158-2162

[122] Long T, Deng Y F, Gan S C, Chen J. Chin. J. Chem. Eng., 2010, 18: 322-327

[123] Gorke J T, Srienc F, Kazlauskas R J. Chem. Commun., 2008, 1235-1237

[1] Jing Wang, Haodi Yu, Junkun Wang, Ling Yuan, Lin Ren, Qingyu Gao. Helical Motion of Active Artificial Swimmers [J]. Progress in Chemistry, 2023, 35(2): 206-218.
[2] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[3] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[4] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.
[5] Qiuyan Liu, Xuefeng Wang, Zhaoxiang Wang, Liquan Chen. Composite Solid Electrolytes with High Contents of Ceramics [J]. Progress in Chemistry, 2021, 33(1): 124-135.
[6] Yifan Xue, Wenhui Meng, Runze Wang, Junjie Ren, Weili Heng, Jianjun Zhang. Supersaturation Theory and Supersaturating Drug Delivery System(SDDS) [J]. Progress in Chemistry, 2020, 32(6): 698-712.
[7] Jiamiao Chen, Jingwen Xiong, Shaomin Ji, Yanping Huo, Jingwei Zhao, Liang Liang. All Solid Polymer Electrolytes for Lithium Batteries [J]. Progress in Chemistry, 2020, 32(4): 481-496.
[8] Fengguo Liu, Bo Wang, Lianyu Zhang, Aimin Liu, Zhaowen Wang, Zhongning Shi. Application of Ionic Liquids in Aluminum and Alloy Electrodeposition [J]. Progress in Chemistry, 2020, 32(12): 2004-2012.
[9] Guobin Tong, Lei E, Zhou Xu, Chunhui Ma, Wei Li, Shouxin Liu. Preparation, Modification and Application of Carbon Materials Based on Ionic Liquids [J]. Progress in Chemistry, 2019, 31(8): 1136-1147.
[10] Zhiyong Li, Ying Feng, Huiyong Wang, Xiaoqing Yuan, Yuling Zhao, Jianji Wang. Structure and Performance Modulation of Photo-Responsive Ionic Liquids [J]. Progress in Chemistry, 2019, 31(11): 1550-1559.
[11] Qingkai Zhang, Feng Liang, Yaochun Yao, Wenhui Ma, Bin Yang, Yongnian Dai. Sodium-Based Solid-State Electrolyte and Its Applications in Energy [J]. Progress in Chemistry, 2019, 31(1): 210-222.
[12] Wenqiao Liu, Zhen Li, Chungu Xia. Preparation and Application of Acidic Ionic Liquid Hybrid Solid Catalytic Materials [J]. Progress in Chemistry, 2018, 30(8): 1143-1160.
[13] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Development and Application of Electrolytes in Supercapacitors [J]. Progress in Chemistry, 2018, 30(11): 1624-1633.
[14] Haidong Cheng, Shuangjun Chen*. Degradation and Synthesis of Poly (Ethylene Terephthalate) by Functionalized Ionic Liquids [J]. Progress in Chemistry, 2017, 29(4): 443-449.
[15] Xiujuan Li, Yunhe Cao, Kang Hua, Chang Wang, Weilin Xu, Dong Fang. Characterization and Modification Method of Oxovanadium-Based Electrode Materials [J]. Progress in Chemistry, 2017, 29(10): 1260-1272.