中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (06): 1042-1051 DOI: 10.7536/PC121041 Previous Articles   Next Articles

• Review •

Study of Molecular Complexes Between Water and Organic/Biologic Molecules by Microwave Spectroscopy

Fu Yujie1, Tang Shouyuan1,2*   

  1. 1. College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, China;
    2. Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400030, China
  • Received: Revised: Online: Published:
PDF ( 697 ) Cited
Export

EndNote

Ris

BibTeX

Microwave spectroscopy is a kind of technique with high sensitivity and resolution for studying molecular dynamics and hyperfine structure of molecules, and could be applied in the areas of chemistry and physics. Some chemical and physical problems, which were difficult to unravel by other techniques, could be solved successfully by microwave spectroscopy. The researches of internal dynamics of complexes between water and organic/biologic molecules by microwave spectroscopy are reviewed in this paper. The forming of complex, structure, conformation, and internal dynamics of the complexes between water and organic chain molecules, aromatic ring molecules, organic compounds containing halogen and biomolecules are discussed in details. The dynamics of the proton donor or proton acceptor of water, typology of interaction, tunneling motions of the complex and conformation changes are introduced. It is illustrated that the internal motions of the partner molecule of water in the complex influences the tunneling features. Tunneling motions of water and organic molecules in the complex are related to the bond strength of the interaction and the symmetry involved in the water and partner molecules. Future trends of microwave spectroscopy are prospected. Contents
1 Introduction
2 Internal dynamics in complexes of water with organic molecules
2.1 Typology of interaction
2.2 Internal dynamics features in complexes of water with organic molecules
3 The complexes of water with CFCs compounds
3.1 The O-H…X hydrogen bond
3.2 The halogen bond
4 The complexes of water with organic chain compounds
5 The complexes of water with ring organic molecule
5.1 Water as proton donor
5.2 Water as proton acceptor
5.3 Water as proton donor and acceptor
6 The complexes of water with biomolecule
7 Conclusion and outlook

CLC Number: 

[1] 唐守渊(Tang S Y), 夏之宁(Xia Z N), 付钰洁(Fu Y J), 勾茜(Gou Q). 化学进展(Prog. Chem.). 2009, 21(5): 1060-1069
[2] 唐守渊(Tang S Y), 付钰洁(Fu Y J), 夏之宁(Xia Z N), 李百战(Li B Z). 化学进展(Prog. Chem.), 2011, 23(10): 2151-2159
[3] Schnell M, Grabow J U. Angew. Chem. Int. Ed., 2006, 45(21): 3465-3470
[4] Suma K, Sumiyoshi Y, Endo Y. Science, 2006, 311(5765): 1278-1281
[5] Melandri S, Evangelisti L, Maris A, Caminati W, Giuliano B M, Feyer V, Prince K C, Coreno M. J. Am. Chem. Soc., 2010, 132 (30): 10269-10271
[6] Su Z, Borho N, Xu Y. J. Am. Chem. Soc., 2006, 128(51): 17126-17131
[7] Caminati W, Grabow J U. Frontiers of Molecular Spectroscopy (Ed. Jaan Laane). Elsevier, 2009. 455-470
[8] Tang S, Evangelisti L, Velino B, Caminati W. J. Chem. Phys., 2008, 129(14): 144301-144306
[9] Blanco S, Melandri S, Ottaviani P, Caminati W. J. Am. Chem. Soc., 2007, 129(9): 2700-2703
[10] Tang J, Xu Y, Mckellar W A R, Jäger W. Science, 2002, 297(5589): 2030-2033
[11] Schnell M. ChemPhysChem, 2010, 11(4): 758-780
[12] Evangelisti L, Caminati W. Phys. Chem. Chem. Phys., 2010, 12(43): 14433-14441
[13] Caminati W, Dell'Erba A, Melandri S, Favero P. J. Am. Chem. Soc., 1998, 120(22): 5555-5558
[14] Caminati W, Maris A, Dell'Erba A, Favero P. Angew. Chem. Int. Ed., 2006, 45(40): 6711-6714
[15] Giuliano B M, Caminati W. Angew. Chem. Int. Ed., 2005, 44(4): 603-606
[16] Caminati W, Melandri S, Rossi I, Favero P. J. Am. Chem. Soc., 1999, 121(43): 10098-10101
[17] Caminati W, Melandri S, Maris A, Ottaviani P. Angew. Chem. Int. Ed., 2006, 45(15): 2438-2442
[18] Melandri S, Maris A, Favero P, Caminati W. Chem. Phys., 2002, 283(1/2): 185-192
[19] Favero L B, Giuliano B M, Melandri S, Maris A, Caminati W. Chem. Eur. J., 2007, 13(20): 5833-5837
[20] Caminati W, Lopez J C, Blanco S, Mata S, Alonso J L. Phys. Chem. Chem. Phys., 2010, 12(35): 10230-10234
[21] Tang S, Majerz I, Caminati W. Phys. Chem. Chem. Phys., 2011, 13(20): 9137-9139
[22] Hatherley L D, Brown R D, Godfrey P D, Pierlot A P, Caminati W, Damiani D, Melandri S, Favero L B. J. Phys. Chem., 1993, 97(1): 46-51
[23] Mata S, Cortijo V, Caminati W, Alonso J L, Sanz M E, Lopez J C, Blanco S. J. Phys. Chem. A, 2010, 114(43): 11393-11398
[24] Su Z, Xu Y. Angew. Chem. Int. Ed., 2007, 46(32): 6163-6166
[25] Mugnai M, Cardini G, Schettino V, Nielsen C J. Mol. Phys., 2007, 105(17/18): 2203-2210
[26] Vhringer-Martinez E, Hansmann B, Hernandez-Soto H, Francisco J S, Troe J, Abel B. Science, 2007, 315(5811): 497-501
[27] Chabinyc M L, Craig S L, Regan C K, Brauman J L. Science, 1998, 279(5358): 1882-1886
[28] Bills B J, Elmuti L F, Sanders A J, Steber A L, Peebles R A, Peebles S A, Groner P, Neill J L, Muckle M T, Pate B H. J. Mol. Spectros., 2011, 268(1/2): 7-15
[29] Feng G, Evangelisti L, Favero L B, Grabow J U, Xia Z, Caminati W. Phys. Chem. Chem. Phys., 2011, 13(31): 14092-14096
[30] Novick S E, Janda K C, Klemperer W. J. Chem. Phys., 1976, 65(12): 5115-5121
[31] Favero L B, Evangelisti L, Maris A, Toribio A V, Lesarri A, Caminati W. J. Phys. Chem. A, 2011, 115(34): 9493-9497
[32] Favero L B, Caminati W. J. Phys. Chem. A, 2009, 113(52): 14308-14311
[33] Priem D, Ha T K, Bauder A. J. Chem. Phys., 2000, 113(1): 169-175
[34] Ouyang B, Howard B J. Phys. Chem. Chem. Phys., 2009, 11(2): 366-373
[35] Ouyang B, Howard B J. J. Phys. Chem. A, 2010, 114 (12): 4109-4117
[36] Ouyang B, Starkey T G, Howard B J. J. Phys. Chem. A, 2007, 111(28): 6165-6175
[37] Ouyang B, Howard B J. J. Phys. Chem. A, 2008, 112(36): 8208-8214
[38] Stockman P A, Blake G A, Lovas F J, Suenram R D. J. Chem. Phys., 1997, 107(10): 3782-3790
[39] Tubergen M J, Torok C R, Lavrich R J. J. Chem. Phys., 2003, 119(16): 8397-8405
[40] Melandri S, Sanz M E, Caminati W, Favero P G, Kisiel Z. J. Am. Chem. Soc., 1998, 120(44): 11504-11509
[41] Caminati W, Moreschini P, Rossi I, Favero P G. J. Am. Chem. Soc., 1998, 120(43): 11144-11148
[42] Su Z, Wen Q, Xu Y. J. Am. Chem. Soc., 2006, 128(20): 6755-6760
[43] Caminati W, Dell'Erba A, Maccaferri G, Favero P G. J. Am. Chem. Soc., 1998, 120(11): 2616-2621
[44] Spoerel U, Stahl W. J. Mol. Spectros., 1998, 190(2): 278-289
[45] Lopez J C, Cortijo V, Blanco S, Alonso J. Phys. Chem. Chem. Phys., 2007, 9(32): 4521-4527
[46] Melandri S, Maris A, Giuliano B M, Faverob L B, Caminati W. Phys. Chem. Chem. Phys., 2010, 12(35): 10210-10214
[47] Ottaviani P, Giuliano M, Velino B, Caminati W. Chem. Eur. J., 2004, 10(2): 538-543
[48] Caminati W, Favero L B, Favero P G, Maris A, Melandri S. Angew. Chem. Int. Ed., 1998, 37(6): 792-795
[49] Caminati W, Moreschini P, Favero P G. J. Phys. Chem. A, 1998, 102(42): 8097-8100
[50] Sanz M E, Lopez J C, Alonso J L, Maris A, Favero P G, Caminati W. J. Phys. Chem. A, 1999, 103(27): 5285-5290
[51] Suzuki S, Green P G, Bumgarner R E, Dasgupta S, Goddard W A, Blake G A. Science, 1992, 257: 942-945
[52] Gutowsky H S, Emilsson T, Arunan E. J. Chem. Phys., 1993, 99(7): 4883-4893
[53] Blanco S, Lopez J C, Alonso J L, Ottaviani P, Camina W. J. Chem. Phys., 2003, 119(2): 880-886
[54] Gerhards M, Schmitt M, Kleinermanns K, Stahl W. J. Chem. Phys., 1996, 104(3): 967-971
[55] Tubergen M J, Andrews A M, Kuczkowski R L. J. Phys. Chem., 1993, 97(29): 7451-7457
[56] Conrad A R, Teumelsan N H, Wang P E, Tubergen M J. J. Phys. Chem. A, 2010, 114(1): 336-342
[57] Brendel K, Mader H, Xu Y, Jager W. J. Mol. Spectros., 2011, 268(1/2): 47-52
[58] Melandri S, Consalvo D, Caminati W, Favero P G. J. Chem. Phys., 1999, 111(9): 3874-3879
[59] Lavrich R J, Torok C R, Tub M J. J. Phys. Chem. A, 2001, 105(36): 8317-8322
[60] Held A, Pratt D W. J. Am. Chem. Soc., 1993, 115(21): 9708-9717
[61] Sundaralingam M, Sikhardu Y C. Science, 1989, 244(4910): 1333-1337
[62] Baker E L, Hubbard R E. Prog. Biophys. Mol. Biol., 1984, 44(2): 97-179
[63] Lovas F J, Suenram R D, Fraser G T, Gillies C W, Zozom J. J. Chem. Phys., 1988, 88(2): 722-729
[64] Fraser G T, Suenram R D, Lovas F J. J. Mol. Struct., 1988, 189(1/2): 165-172
[65] Lucas B, Lecomte F, Reimann B, Barth H D, Gregoire G, Bouteiller Y, Schermann J P, Desfrancüois C. Phys. Chem. Chem. Phys., 2004, 6(10): 2600-2604
[66] Blanco S, Lopez J C, Lesarri A, Alonso J L. J. Am. Chem. Soc., 2006, 128(37): 12111-12121
[67] Alonso J L, Cocinero E J, Lesarri A, Sanz M E, Lpez J C. Angew. Chem. Int. Ed., 2006, 45(21): 3471-3474
[68] A-Moreno J R, Demaison J, Huet T R. J. Am. Chem. Soc., 2006, 128(32): 10467-10473
[69] Lopez J C, Alonso J L, Pen I, Vaquero V. Phys. Chem. Chem. Phys., 2010, 12(42): 14128-14134
[70] Lavrich R J, Tubergen M J. J. Am. Chem. Soc., 2000, 122(12): 2938-2943
[71] Pérez C, Muckle M T, Zaleski D P, Seifert N A, Temelso B, Shields G C, Kisiel Z, Pate B H. Science, 2012, 336(6083): 897-901
[72] Melnik D G, Miller T A. Science, 2008, 320(5878): 881-882

[1] Zhixuan Wang, Shaokui Zheng. Selective Ionic Removal Strategy and Adsorbent Preparation [J]. Progress in Chemistry, 2023, 35(5): 780-793.
[2] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[3] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[4] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[5] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[6] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[7] Lusha Gao, Jingwen Li, Hui Zong, Qianyu Liu, Fansheng Hu, Jiesheng Chen. Condensed Matter and Chemical Reactions in Hydrothermal Systems [J]. Progress in Chemistry, 2022, 34(7): 1492-1508.
[8] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[9] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[10] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[11] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[12] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[13] Shixiang Xue, Pan Wu, Liang Zhao, Yanli Nan, Wanying Lei. The Application of CoFe Layered Double Hydroxide-Based Materials in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(12): 2686-2699.
[14] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[15] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.