中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (04): 611-619 DOI: 10.7536/PC121033 Previous Articles   Next Articles

• Review •

Magnetic Iron Oxide Nanoparticle-Based Theranostic Nanomedicine

Qi Hui, Zhu Yanhong*, Xu Huibi, Yang Xiangliang   

  1. College of Life Science and Technology, Huazhong University of Science and Technology, National Engineering Research Center for Nanomedicine, Wuhan 430074, China
  • Received: Revised: Online: Published:
PDF ( 1272 ) Cited
Export

EndNote

Ris

BibTeX

Theranostic nanomedicine is emerging as a promising therapeutic strategy. Magnetic iron oxide nanoparticle-based theranostic nanomedicine takes advantage of nanotechnology to load both nanoparticle and therapeutic agent into one nanoparticle. The resulting nanosystem is composed of three main components: an iron oxide nanoparticle core, coating, and multifunction moieties. These nanoparticles are expected to play a significant role in personalized medicine for their capability of diagnosis, visualizing drug delivering and monitoring therapeutic response in real-time. In this review, we summarize the synthesis, surface modification, multifunction and biomedicine application of magnetic iron oxide nanoparticle, especially focused on the part of surface modification and multifunction, which are associated with the multimodality and multifunctionality theranostics. At last, the challenges of the application of nanomedicine in personalized medicine are presented.

Contents
1 Introduction
2 Synthesis of MNPs
3 The compounds commonly used in the surface modification of MNPs
3.1 Polymers
3.2 Inorganic shells
3.3 Small organic molecules
4 Surface functionalization of MNPs
4.1 Targeting modification of MNPs
4.2 Multifunction of MNPs
5 Application of theranostic nanomedicine based on MNPs
6 Challenge of theranostic nanomedicine in clinic

CLC Number: 

[1] Xie J, Lee S, Chen X. Adv. Drug Deliv. Rev., 2010, 62(11): 1064-1079
[2] Kelkar S S, Reineke T M. Bioconjug. Chem., 2011, 22(10): 1879-1903
[3] Nie S, Xing Y, Kim G J, Simons J W. Annu. Rev. Biomed. Eng., 2007, 9: 257-288
[4] Fang C, Zhang M. J. Control Release, 2010, 146(1): 2-5
[5] Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Adv. Drug Deliv. Rev., 2011, 63(1/2): 24-46
[6] Lin M M, Kim H H, Kim H, Dobson J, Kim D K. Nanomedicine, 2010, 5(1): 109-133
[7] Sun C, Lee J S, Zhang M. Adv. Drug Deliv. Rev., 2008, 60(11): 1252-1265
[8] Andreas K, Georgieva R, Ladwig M, Mueller S, Notter M, Sittinger M, Ringe J. Biomaterials, 2012, 33(18): 4515-4525
[9] Jain T K, Richey J, Strand M, Leslie-Pelecky D L, Flask C A, Labhasetwar V. Biomaterials, 2008, 29(29): 4012-4021
[10] Kim D K, Mikhaylova M, Zhang Y, Muhammed M. Chem. Mat., 2003, 15(8): 1617-1627
[11] Ramaswamy S, Schornack P A, Smelko A G, Boronyak S M, Ivanova J, Mayer J E, Sacks M S. NMR Biomed., 2012, 25(3): 410-417
[12] Shubayev V I, Pisanic T R, Jin S. Adv. Drug Deliv. Rev., 2009, 61(6): 467-477
[13] Lammers T, Kiessling F, Hennink W E, Storm G. Mol. Pharm., 2010, 7(6): 1899-1912
[14] Chen X Y, Gambhlr S S, Cheon J. Accounts Chem. Res., 2011, 44(10): 841-841
[15] Wu J H, Ko S P, Liu H L, Jung M H, Lee J H, Ju J S, Kim Y K. Colloid. Surf. A-Physicochem. Eng. Asp., 2008, 313/314: 268-272
[16] Chin A B, Yaacob I I. J. Mater. Process. Technol., 2007, 191(1/3): 235-237
[17] Goti Dc' M, Jurkin T, Musi Dc' S. Colloid Poly. Sci., 2007, 285(7): 793-800
[18] Vasylenko I V, Kolotilov S V, Kotenko I E, Gavrilenko K S, Tuna F, Timco G A, Winpenny R E P, Pavlishchuk V V. J. Magn. Magn. Mater., 2012, 324(4): 595-601
[19] Simeonidis K, Mourdikoudis S, Moulla M, Tsiaoussis I, Martinez-Boubeta C, Angelakeris M, Dendrinou-Samara C, Kalogirou O. J. Magn. Magn. Mater., 2007, 316(2): e1-e4
[20] Chen R F, Cheng J H, Wei Y. J. Alloy. Compd., 2012, 520: 266-271
[21] Tadi Dc' M, Kusigerski V, Markovi Dc' D, Panjan M, Miloševi Dc' I, Spasojevi Dc' V. J. Alloy. Compd., 2012, 525: 28-33
[22] Marchegiani G, Imperatori P, Mari A, Pilloni L, Chiolerio A, Allia P, Tiberto P, Suber L. Ultrason. Sonochem., 2012, 19(4): 877-882
[23] Cabrera L, Gutierrez S, Menendez N, Morales M P, Heffasti P. Electrochim. Acta, 2008, 53(8): 3436-3441
[24] Ma Z, Liu H. China Particuology, 2007, 5(1/2): 1-10
[25] Berry C C, Wells S, Charles S, Aitchison G, Curtis A S. Biomaterials, 2004, 25(23): 5405-5413
[26] Fang M, Strom V, Olsson R T, Belova L, Rao K V. Nanotechnology, 2012, 23(14): art. no. 145601
[27] Shi R R, Gao G H, Yi R, Zhou K C, Qiu G Z, Liu X H. Chin. J. Chem., 2009, 27(4): 739-744
[28] Amara D, Felner I, Nowik I, Margel S. Colloid Surf. A- Physicochem. Eng. Asp., 2009, 339(1/3): 106-110
[29] Sun S H, Zeng H. J. Am. Chem. Soc., 2002, 124(28): 8204-8205
[30] Xie J, Chen K, Huang J, Lee S, Wang J H, Gao J, Li X G, Chen X Y. Biomaterials, 2010, 31(11): 3016-3022
[31] Xie J, Liu G, Eden H S, Ai H, Chen X Y. Accounts Chem. Res., 2011, 44(10): 883-892
[32] Jun Y W, Lee J H, Cheon J. Angew. Chem. Int. Ed. Engl., 2008, 47(28): 5122-5135
[33] Gupta A K, Gupta M. Biomaterials, 2005, 26(18): 3995-4021
[34] Rosen J E, Chan L, Shieh D B, Gu F X. Nanomedicine, 2012, 8(3): 275-290
[35] Gupta A K, Curtis A S G. J. Mater. Sci. Mater. Med., 2004, 15(4): 493-496
[36] Erathodiyil N, Ying J Y. Acc. Chem. Res., 2011, 44(10): 925-935
[37] Flesch C, Unterfinger Y, Bourgeat-Lami E, Duguet E, Delaite C, Dumas P. Macromol. Rapid Commun., 2005, 26(18): 1494-1498
[38] Zheng Y, Gao S, Ying J Y. Adv. Mater., 2007, 19(3): 376-380
[39] Jiwon L, Tetsuhioko I, Mamoru S. J. Colloid Interface Sci., 1996, 177: 490- 494
[40] Liu S, Wei X, Chu M, Peng J, Xu Y. Colloids Surf. B-Biointerfaces, 2006, 51(2): 101-106
[41] Garcia I, Tercjak A, Zafeiropoulos N E, Stamm M, Mondragon I. J. Polym. Sci. Pol. Chem., 2007, 45(20): 4744-4750
[42] Hickey R J, Haynes A S, Kikkawa J M, Park S J. J. Am. Chem. Soc., 2011, 133(5): 1517-1525
[43] Berry C C, Wells S, Charles S, Aitchison G, Curtis A S. Biomaterials, 2004, 25(23): 5405-5413
[44] Cho J H, Ko S G, Ahn Y, Choi E J. J. Magn., 2009, 14(3): 124-128
[45] Sun C R, Du K, Fang C, Bhattarai N, Veiseh O, Kievit F, Stephen Z, Lee D H, Ellenbogen R G, Ratner B, Zhang M Q. ACS Nano, 2010, 4(4): 2402-2410
[46] Chung H J, Lee H, Bae K H, Lee Y, Park J, Cho S W, Hwang J Y, Park H, Langer R, Anderson D, Park T G. ACS Nano, 2011, 5(6): 4329-4336
[47] Lu Z, Dai J, Song X, Wang G, Yang W. Colloid Surf. A-Physicochem. Eng. Asp., 2008, 317(1/3): 450-456
[48] Xu Z Z, Wang C C, Yang W L, Fu S K. J. Mater. Sci., 2005, 40(17): 4667-4669
[49] Hui C, Shen C M, Tian J F, Bao L H, Ding H, Li C, Tian Y A, Shi X Z, Gao H J. Nanoscale, 2011, 3(2): 701-705
[50] Lu Y, Yin Y D, Mayers B T, Xia Y N. Nano Lett., 2002, 2(3): 183-186
[51] Li Y T, Liu J, Zhong Y J, Zhang J, Wang Z Y, Wang L, An Y L, Lin M, Gao Z Q, Zhang D S. Int. J. Nanomed., 2011, 6: 2805-2819
[52] Xu Z C, Hou Y L, Sun S H. J. Am. Chem. Soc., 2007, 129(28): 8698-8699
[53] Kumagai M, Sarma T K, Cabral H, Kaida S, Sekino M, Herlambang N, Osada K, Kano M R, Nishiyama N, Kataoka K. Macromol. Rapid Commun., 2010, 31(17): 1521-1528
[54] Lyon J L, Fleming D A, Stone M B, Schiffer P, Williams M E. Nano Lett., 2004, 4(4): 719-723
[55] Tamer U, Gündo Dgˇ du Y, Boyací H, Pekmez K. J. Nanopart. Res., 2009, 12(4): 1187-1196
[56] Cui Y R, Hong C, Zhou Y L, Li Y, Gao X M, Zhang X. Talanta, 2011, 85(3): 1246-1252
[57] De Palma R, Peeters S, van Bael M J, van den Rul H, Bonroy K, Laureyn W, Mullens J, Borghs G, Maes G. Chem. Mat., 2007, 19(7): 1821-1831
[58] ampelj S, Makovec D, Drofenik M. J. Magn. Magn. Mater., 2009, 321: 1346-1350
[59] Tassa C, Shaw S Y, Weissleder R. Acc. Chem. Res., 2011, 44(10): 842-852
[60] Koo H, Huh M S, Sun I C, Yuk S H, Choi K, Kim K, Kwon I C. Acc. Chem. Res., 2011, 44(10): 1018-1028
[61] Ling Y, Wei K, Luo Y, Gao X, Zhong S Z. Biomaterials, 2011, 32(29): 7139-7150
[62] Yang X Q, Hong H, Grailer J J, Rowland I J, Javadi A, Hurley S A, Xiao Y L, Yang Y A, Zhang Y, Nickles R, Cai W B, Steeber D A. Biomaterials, 2011, 32(17): 4151-4160
[63] Wunderbaldinger P, Josephson L, Weissleder R. Bioconjug. Chem., 2002, 13(2): 264-268
[64] Gupta A K, Naregalkar R R, Vaidya V D, Gupta M. Nanomedicine, 2007, 2(1): 23-39
[65] Xie H, Zhu Y H, Jiang W L, Zhou Q, Yang H, Gu N, Zhang Y, Xu H B, Yang X L. Biomaterials, 2011, 32(2): 495-502
[66] Fei X N, Liu L J, Zhu S, Liu Y R. Prog. Chem., 2011, 23(8): 1728-1736
[67] Yu M K, Park J, Jon S. Theranostics, 2012, 2: 3-44
[68] Kommareddy S, Amiji M. Bioconjugate Chem., 2005, 16(6): 1423-1432
[69] Sun E Y, Josephson L, Kelly K A, Weissleder R. Bioconjug. Chem., 2006, 17(1): 109-113
[70] McCarthy J R, Weissleder R. Adv. Drug Deliv. Rev., 2008, 60(11): 1241-1251
[71] Reddy G R, Bhojani M S, McConville P, Moody J, Moffat B A, Hall D E, Kim G, Koo Y E, Woolliscroft M J, Sugai J V, Johnson T D, Philbert M A, Kopelman R, Rehemtulla A, Ross B D. Clin. Cancer Res., 2006, 12(22): 6677-6686
[72] Mok H, Veiseh O, Fang C, Kievit F M, Wang F Y, Park J O, Zhang M Q. Mol. Pharm., 2010, 7(6): 1930-1939
[73] Yu M K, Park J, Jeong Y Y, Moon W K, Jon S. Nanotechnology, 2010, 21(41): art. no. 415102
[74] Veiseh O, Sun C, Fang C, Bhattarai N, Gunn J, Kievit F, Du K, Pullar B, Lee D, Ellenbogen R G, Olson J, Zhang M. Cancer Res., 2009, 69(15): 6200-6207
[75] Hadjipanayis C G, Machaidze R, Kaluzova M, Wang L, Schuette A J, Chen H, Wu X, Mao H. Cancer Res., 2010, 70(15): 6303-6312
[76] Ge Y, Zhang Y, He S, Nie F, Teng G, Gu N. Nanoscale Res. Lett., 2009, 4(4): 287-295
[77] Kumar M, Yigit M, Dai G, Moore A, Medarova Z. Cancer Res., 2010, 70(19): 7553-7561
[78] Brunel F M, Lewis J D, Destito G, Steinmetz N F, Manchester M, Stuhlmann H, Dawson P E. Nano Lett., 2010, 10(3): 1093-1097
[79] Zhang J, Misra R D. Acta Biomater., 2007, 3(6): 838-850
[80] Kolb H C, Finn M G, Sharpless K B. Angew. Chem. Int. Edit., 2001, 40 (11): 2004-2021
[81] Sun E Y, Josephson L, Weissleder R. Mol. Imaging, 2006, 5(2): 122-128
[82] Das M, Bandyopadhyay D, Mishra D, Datir S, Dhak P, Jain S, Maiti T K, Basak A, Pramanik P. Bioconjug. Chem., 2011, 22(6): 1181-1193
[83] Santra S, Kaittanis C, Grimm J, Perez J M. Small, 2009, 5(16): 1862-1868
[84] Chen G H, Chen W J, Wu Z, Yuan R X, Li H, Gao J M, Shuai X T. Biomaterials, 2009, 30: 1962-1970
[85] Jain T K, Morales M A, Sahoo S K, Leslie-Pelecky D L, Labhasetwar V. Mol. Pharm., 2005, 2(3): 194-205
[86] Ling Y, Wei K, Luo Y, Gao X, Zhong S Z. Biomaterials, 2011, 32: 7139-7150
[87] El-Dakdouki M H, Zhu D C, El-Boubbou K, Kamat M, Chen J, Li W, Huang X. Biomacromolecules, 2012, 13(4): 1144-1151
[88] Medarova Z, Pham W, Farrar C, Petkova V, Moore A. Nat. Med., 2007, 13(3): 372-377
[89] Medarova Z, Rashkovetsky L, Pantazopoulos P, Moore A. Cancer Res., 2009, 69(3): 1182-1189

[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[3] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[4] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[5] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[6] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[7] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[8] Shiying Yang, Junqin Liu, Qianfeng Li, Yang Li. Modification Mechanism of Zero-Valent Aluminum by Mechanical Ball Milling [J]. Progress in Chemistry, 2021, 33(10): 1741-1755.
[9] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[10] Hao Sun, Chengwei Song, Yuepeng Pang, Shiyou Zheng. Functional Design of Separator for Li-S Batteries [J]. Progress in Chemistry, 2020, 32(9): 1402-1411.
[11] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.
[12] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[13] Huiya Wang, Limin Zhao, Fang Zhang, Dannong He. High-Performance Lithium-Ion Secondary Battery Membranes [J]. Progress in Chemistry, 2019, 31(9): 1251-1262.
[14] Zhaoxiang Wang, Jun Ma, Yurui Gao, Shuai Liu, Xin Feng, Liquan Chen. Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials [J]. Progress in Chemistry, 2019, 31(11): 1591-1614.
[15] Jihao Zuo, Jiahui Chen, Xiufang Wen, Shoupin Xu, Pihui Pi. Advanced Materials for Separation of Oil/Water Emulsion [J]. Progress in Chemistry, 2019, 31(10): 1440-1458.