中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (04): 620-632 DOI: 10.7536/PC121029 Previous Articles   Next Articles

• Review •

Phosphoprotein/Phosphopeptide Enrichment and Analysis Based on Nanostructured Materials

Cheng Gong1, Wang Zhigang1, Liu Yanlin1, Zhang Jilin*1, Sun Dehui3, Ni Jiazuan1,2   

  1. 1. State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 13002;
    2. College of Life Sciences, Shenzhen University, Shenzhen 518060, China;
    3. Changchun Institute of Technology, Changchun 130012, China
  • Received: Revised: Online: Published:
PDF ( 972 ) Cited
Export

EndNote

Ris

BibTeX

Protein phosphorylation is one of the most ubiquitous post-translational modifications. Many low-abundance endogenous phosphoproteins and phosphopeptides in the body fluids or tissues are biomarkers with higher clinical sensitivity and specificity, which could provide valuable information for the detection of many diseases and elucidation of pathology. It is still a great challenge to detect the phosphoproteins and phosphopeptides from complex biological samples directly due to reversibility of protein phosphorylation and the extremely low concentrations of phosphoproteins. Nanostructured materials have attracted particular attentions in enrichment, separation, and purification of phosphoproteins/phosphopeptides due to their larger surface area, numerous affinity sites and unique structures. The research subject has become one of research hotspots in phosphoproteomics presently. Various multifunctional nanostructured materials such as core-shell particles with mesoporous affinity shell and magnetic core, hybrids of multiple components and composite affinity materials have been synthesized for selective enrichment and fast purification of phosphoproteins/phosphopeptides. In this review, we are focusing on recent advancements of nanostructured materials for phosphoprotein/phosphopeptide enrichment and purification prior to MS analysis. Definition, structure characteristic, unique physicochemical properties and potential in bio-separation of the nanostructured materials are first introduced. Subsequently, the related research background on phosphoproteomic studies in proteomics using mass spectrometric strategies in combination with phosphospecific enrichment techniques is briefly presented. After that, two types of affinity enrichment mechanisms to phosphoproteins/phosphopeptides are compactly discussed. Next, mesoporous, hybrid, and composite nanostructured materials for enrichment of phosphoproteins/phosphopeptides as well as application of multifunctional nanostructured materials in phosphoproteomics are summarized in detail. Finally, some unsolved problems and a brief perspective and outlook on phosphopeptide enrichment are proposed.

Contents
1 Introduction
2 Protein phosphorylation and enrichment detection of phosphoproteins/phosphopeptides
2.1 Protein phosphorylation
2.2 Enrichment detection of phosphoproteins/phosphopeptides
3 Mechanism of affinity enrichment of phosphoproteins/phosphopeptides
4 Mesoporous nanostructured materials for enrichment of phosphoproteins/phosphopeptides
4.1 Mesoporous SiO2 nanostructured materials with immobilized affinity material
4.2 Mesoporous nanostructured materials doped with affinity material
4.3 Mesoporous metal oxide nanostructured materials
5 Composite nanostructured materials for enrichment of phosphoproteins/phosphopeptides
5.1 Magnetic core-shell nanostructured materials
5.2 Mesoporous magnetic nanostructured materials
5.3 Hybrid composite nanostructured materials
6 Application of multifunctional nanostructured materials in phosphoproteomics
6.1 Multifunctional nanostructured materials for fast proteolysis and phosphopeptide enrichment
6.2 Multifunctional nanostructured materials for enrichment and identification of phosphopeptides
6.3 Multifunctional nanostructured materials for enrichment of various biomolecules
6.4 Nanostructured materials modified target plate for on-plate enrichment and analysis of phosphopeptides
7 Conclusions and outlook

CLC Number: 

[1] 张立德(Zhang L D), 牟季美(Mu J M). 纳米材料和纳米结构(Nanomaterial and Nanostructure), 北京: 科学出版社(Beijing: Science Press), 2002. 411
[2] 柏兆方(Bai Z F), 王红霞(Wang H X). 分析化学(Analytical Chemistry), 2009, 9: 1382-1389
[3] 毕炜(Bi W), 王京兰(Wang J L), 钱小红(Qiang X H), 蔡耘(Cai Y). 生物技术通讯(Letters in Biotechnology), 2007, 18: 515-518
[4] 李鹏章(Li P Z), 王粤博(Wang Y B). 化学进展(Progress in Chemistry), 2012, 24: 1785-1793
[5] Salovska B, Tichy A, Rezacova M, Vavrova J, Novotna E. Rev. Anal. Chem., 2012, 31: 29-41
[6] Dunn J D, Reid G E, Bruening M L. Mass. Spectrom. Rev., 2010, 29: 29-54
[7] Kosako H, Yamaguchi N, Aranami C, Ushiyama M, Kose S, Imamoto N, Taniguchi H, Nishida E, Hattori S. Nat. Struct. Mol. Biol., 2009, 16: 1026-1035
[8] Yang X, Ongusaha P P, Miles P D, Havstad J C, Zhang F, So W V, Kudlow J E, Michell R H, Olefsky J M, Field S J, Evans R M. Nature, 2008, 451: 964-969
[9] Sickmann A, Meyer H E. Proteomics, 2001, 1: 200-206
[10] Grimsrud P A, Swaney D L, Wenger C D, Beauchene N A, Coon J J. ACS Chem. Biol., 2010, 5: 105-119
[11] Ubersax J A, Ferrell J E Jr. Nat. Rev. Mol. Cell Bio., 2007, 8: 530-541
[12] Johnson L N. Biochem. Soc. T., 2009, 37: 627-641
[13] Manni S, Mauban J H, Ward C W, Bond M. J. Biol. Chem., 2008, 283: 24145-24154
[14] Diamandis E P. J. Proteome Res., 2006, 5: 2079-2082
[15] Harsha H C, Pandey A. Mol. Oncology., 2010, 4: 482-495
[16] Lopez E, Lopez I, Ferreira A, Sequi J. Proteome Sci., 2011, 9: 27
[17] Yates J R, Ruse C I, Nakorchevsky A. Annu. Rev. Biomed. Eng., 2009, 11: 49-79
[18] Tichy A, Salovska B, Rehulka P, Klimentova J, Vavrova J, Stulik J, Hernychova L. J. Proteomics, 2011, 74: 2786-2797
[19] Guerrera I C, Predic-Atkinson J, Kleiner O, Soskic V, Godovac-Zimmermann J. J. Proteome Res., 2005, 4: 1545-1553
[20] Aryal U K, Olson D J, Ross A R. J. Biomol. Tech., 2008, 19: 296-310
[21] Porath J, Carlsson J A N, Olsson I, Belfrage G. Nature, 1975, 258: 598-599
[22] Lai A C Y, Tsai C F, Hsu C C, Sun Y N, Chen Y J. Rapid Commun. Mass Sp., 2012, 26: 2186-2194
[23] Hsu J L, Wang L Y, Wang S Y, Lin C H, Ho K C, Shi F K, Chang I F. Proteome Sci., 2009, 7: art. no. 42
[24] Rinalducci S, Larsen M, Mohammed S, Zolla L. J. Proteome Res., 2006, 5: 973-982
[25] Kweon H K, Hakansson K. Anal. Chem., 2006, 78: 1743-1749
[26] Chen C T, Chen Y C. J. Mass Spectrom., 2008, 43: 538-541
[27] Blacken G R, Sadílek M, Ture ek F. J. Mass Spectrom., 2008, 43: 1072-1080
[28] Ficarro S B, Parikh J R, Blank N C, Marto J A. Anal. Chem., 2008, 80: 4606-4613
[29] Leitner A, Sturm M, Lindner W. Anal. Chim. Acta, 2011, 703: 19-30
[30] Pan C, Ye M, Liu Y, Feng S, Jiang X, Han G, Zhu J, Zou H. J. Proteome Res., 2006, 5: 3114-3124
[31] Hu L, Zhou H, Li Y, Sun S, Guo L, Ye M, Tian X, Gu J, Yang S, Zou H. Anal. Chem., 2009, 81: 94-104
[32] Wang P, Zhao L, Wu R, Zhong H, Zou H, Yang J, Yang Q. J. Phys. Chem. C, 2009, 113: 1359-1366
[33] Han G, Ye M, Zou H. Analyst, 2008, 133: 1128-1138
[34] Wan J, Qian K, Qiao L, Wang Y, Kong J, Yang P, Liu B, Yu C. Chem. Eur. J., 2009, 15: 2504-2508
[35] Wan H, Yan J, Yu L, Zhang X, Xue X, Li X, Liang X. Talanta, 2010, 82: 1701-1707
[36] Guo W C, Wan J J, Qian K, Yu C Z, Kong J L, Yang P Y, Liu B H. Sci. China Chem., 2011, 54: 1327-1333
[37] Zhang Y, Chen C, Qin H Q, Wu R A, Zou H F. Chem. Commun., 2010, 2271-2273
[38] Xu B, Zhou L, Wang F, Qin H, Zhu J, Zou H. Chem. Commun., 2012, 1802-1804
[39] Nelson C A, Szczech J R, Xu Q, Lawrence M J, Jin S, Ge Y. Chem. Commun., 2009, 6607-6609
[40] Nelson C A, Szczech J R, Dooley C J, Xu Q, Lawrence MJ, Zhu H, Jin S, Ge Y. Anal. Chem., 2010, 82: 7193-7201
[41] Han L, Shan Z, Chen D, Yu X, Yang P, Tu B, Zhao D. J. Colloid Interf. Sci., 2008, 318: 315-321
[42] Lu Z, Ye M, Li N, Zhong W, Yin Y. Angew. Chem. Int. Ed., 2010, 49: 1862-1866
[43] Lu Z, Duan J, He L, Hu Y, Yin Y. Anal. Chem., 2010, 82: 7249-7258
[44] Cheng G, Zhang J L, Liu Y L, Sun D H, Ni J Z. Chem. Eur. J., 2012, 18: 2014-2020
[45] Xu X, Deng C, Gao M, Yu W, Yang P, Zhang X. Adv. Mater., 2006, 18: 3289-3293
[46] Tan F, Zhang Y, Mi W, Wang J, Wei J, Cai Y, Qian X. J. Proteome Res., 2008, 7: 1078-1087
[47] Li Y, Qi D, Deng C, Yang P, Zhang X. J. Proteome Res., 2008, 7: 1767-1777
[48] Qi D, Mao Y, Lu J, Deng C, Zhang X. J. Chromatogr. A, 2010, 1217: 2606-2617
[49] Ma W, Zhang Y, Li L, Zhang Y, Yu M, Guo J, Lu H, Wang C. Adv. Funct. Mater., 2012, DOI: 10.1002/adfm. 201201364
[50] Zhang L, Zhao Q, Liang Z, Yang K, Sun L, Zhang L, Zhang Y. Chem. Commun., 2012, 6274-6276
[51] Chen C T, Chen Y C. Anal. Chem., 2005, 77: 5912-5919
[52] Lin H Y, Chen W Y, Chen Y C. J. Biomed. Nanotechnol., 2009, 5: 215-223
[53] Chen C T, Chen Y C. J. Biomed. Nanotechnol., 2008, 4: 73-79
[54] Lo C Y, Chen W Y, Chen C T, Chen Y C. J. Proteome Res., 2006, 6: 887-893
[55] Chen C T, Chen W Y, Tsai P J, Chien K Y, Yu J S, Chen Y C. J. Proteome Res., 2006, 6: 316-325
[56] Chen W Y, Chen Y C. Anal. Bioanal. Chem., 2010, 398: 2049-2057
[57] Li Y, Xu X, Qi D, Deng C, Yang P, Zhang X. J. Proteome Res., 2008, 7: 2526-2538
[58] Li Y, Lin H, Deng C, Yang P, Zhang X. Proteomics, 2008, 8: 238-249
[59] Li Y, Liu Y, Tang J, Lin H, Yao N, Shen X, Deng C, Yang P, Zhang X. J. Chromatogr. A, 2007, 1172: 57-71
[60] Li Y, Leng T, Lin H, Deng C, Xu X, Yao N, Yang P, Zhang X. J. Proteome Res., 2007, 6: 4498-4510
[61] Qi D, Lu J, Deng C, Zhang X. J. Phys. Chem. C, 2009, 113: 15854-15861
[62] Qi D, Lu J, Deng C, Zhang X. J. Chromatogr. A, 2009, 1216: 5533-5539
[63] Lu J, Li Y, Deng C. Nanoscale, 2011, 1225-1233
[64] Wu J H, Li X S, Zhao Y, Gao Q, Guo L, Feng Y Q. Chem. Commun., 2010, 9031-9033
[65] Li X S, Su X, Zhu G T, Zhao Y, Yuan B F, Guo L, Feng Y Q. J. Sep. Sci., 2012, 35: 1506-1513
[66] Cheng G, Zhang J L, Liu Y L, Sun D H, Ni J Z. Chem. Commun., 2011, 5732-5734
[67] Wang Z G, Cheng G, Liu Y L, Zhang J L, Sun D H, Ni J Z. Small, 2012, 8(22): 3456-3464
[68] Yan J, Li X, Cheng S, Ke Y, Liang X. Chem. Commun., 2009, 2929-2931
[69] Pang H, Lu Q, Gao F. Chem. Commun., 2011, 11772-11774
[70] Lu J, Wang M, Li Y, Deng C. Nanoscale, 2012, 4: 1577-1580
[71] Min Q, Zhang X, Zhang H, Zhou F, Zhu J J. Chem. Commun., 2011, 11709-11711
[72] Qian K, Wan J, Liu F, Girault HH, Liu B, Yu C. ACS Nano, 2009, 3: 3656-3662
[73] Thingholm T E, Jorgensen T J, Jensen O N, Larsen M R. Nat. Protoc., 2006, 1: 1929-1935
[74] Chen C T, Chen Y C. Chem. Commun., 2010, 5674-5676
[75] Woo E M, Fenyo D, Kwok B H, Funabiki H, Chait B T. Anal. Chem., 2008, 80: 2419-2425
[76] Jia W, Andaya A, Leary J A. Anal. Chem., 2012, 84: 2466-2473
[77] Luedtke N W, Schepartz A. Chem. Commun., 2005, 5426-5428
[78] Tan F, Zhang Y, Wang J, Wei J, Cai Y, Qian X H. J. Mass Spectrom., 2008, 43: 628-632
[79] Wu J H, Xiao K, Zhao Y, Zhang W P, Guo L, Feng Y Q. J. Sep. Sci., 2010, 33: 2361-2368
[80] Cheng G, Liu Y L, Zhang J L, Sun D H, Ni J Z. Anal. Bioanal. Chem., 2012, 404: 763-770
[81] Yan J, Li X, Yu L, Jin Y, Zhang X, Xue X, Ke Y, Liang X. Chem. Commun., 2010, 5488-5490
[82] Cheng G, Wang Z G, Liu Y L, Zhang J L, Sun D H, Ni J Z. Chem. Commun., 2012, 10240-10242
[83] Xu Y, Bruening M L, Watson J T. Anal. Chem., 2004, 76: 3106-3111
[84] Dunn J D, Watson J T, Bruening M L. Anal. Chem., 2006, 78: 1574-1580
[85] Dunn J D, Igrisan E A, Palumbo A M, Reid G E, Bruening M L. Anal. Chem., 2008, 80: 5727-5735
[86] Ibanez A J, Muck A, Svatos A. J. Proteome Res., 2007, 6: 3842-3848
[87] Zhou H, Xu S, Ye M, Feng S, Pan C, Jiang X, Li X, Han G, Fu Y, Zou H. J. Proteome Res., 2006, 5: 2431-2437
[88] Blacken G R, Volny M, Vaisar T, Sadilek M, Turecek F. Anal. Chem., 2007, 79: 5449-5456
[89] Qiao L, Roussel C, Wan J, Yang P, Girault HH, Liu B. J. Proteome Res., 2007, 6: 4763-4769
[90] Lu J, Liu S, Deng C. Chem. Commun., 2011, 5334-5336
[91] Wang H, Duan J, Cheng Q. Anal. Chem., 2011, 83: 1624-1631
[92] Tang L A L, Wang J, Lim T K, Bi X, Lee W C, Lin Q, Chang Y T, Lim C T, Loh K P. Anal. Chem., 2012, 84: 6693-6700

[1] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[2] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[3] Xuemei Wei, Zhanwei Ma, Xinyuan Mu, Jinzhi Lu, Bin Hu. Catalyst in Acetylene Carbonylation: From Homogeneous to Heterogeneous [J]. Progress in Chemistry, 2021, 33(2): 243-253.
[4] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[5] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[6] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[7] Peng Ning, Yunhui Cheng, Zhou Xu, Li Ding, Maolong Chen. Application of Metal-Organic Framework Materials in Enrichment of Active Peptides [J]. Progress in Chemistry, 2020, 32(4): 497-504.
[8] Axin Liang, Bo Tang, Liquan Sun, Xin Zhang, Huipeng Hou, Aiqin Luo. New Materials for the Separation and Enrichment of N-Glycopeptides/Glycoproteins [J]. Progress in Chemistry, 2019, 31(7): 996-1006.
[9] Yun Zhao, Yuqiong Kang, Yuhong Jin, Li Wang, Guangyu Tian, Xiangming He. Silicon-Based and -Related Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2019, 31(4): 613-630.
[10] Chang Liu, Feng Wu, Qianqian Su, Weiping Qian. Template Preparation and Application in Biological Detection of Porous Noble Metal Nanostructures [J]. Progress in Chemistry, 2019, 31(10): 1396-1405.
[11] Changyuan Bao, Jiajun Han*, Jinning Cheng, Ruitao Zhang. Electrode Materials Blended with Graphene/Polyaniline for Supercapacitor [J]. Progress in Chemistry, 2018, 30(9): 1349-1363.
[12] Botian Li, Xing Wen, Liming Tang. Preparation of One-Dimensional Polymer-Inorganic Composite Nanomaterials [J]. Progress in Chemistry, 2018, 30(4): 338-348.
[13] Huadong Zhang, Gongke Li*, Yufei Hu*. Applications of Halloysite Nanotubes in Separation and Enrichment [J]. Progress in Chemistry, 2018, 30(2/3): 198-205.
[14] Yun Zhao, Yuhong Jin, Li Wang, Guangyu Tian, Xiangming He. The Application of Self-Assembled Hierarchical Structures in Lithium-Ion Batteries [J]. Progress in Chemistry, 2018, 30(11): 1761-1769.
[15] Dekai Ye, Xiaolei Zuo, Chunhai Fan. DNA Nanostructure-Based Engineering of the Biosensing Interface for Biomolecular Detection [J]. Progress in Chemistry, 2017, 29(1): 36-46.