中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (05): 838-858 DOI: 10.7536/PC121023 Previous Articles   Next Articles

• Review •

Structural Investigation and Application of Lignins

Lu Yao1, Wei Xianyong*1, Zong Zhimin1, Lu Yongchao1,2, Zhao Wei1, Cao Jingpei1   

  1. 1. School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou 221116, China;
    2. The Institute of Seawater Desalination and Multipurpose Utilization, State Oceanic Administration, Tianjin 300192, China
  • Received: Revised: Online: Published:
PDF ( 6764 ) Cited
Export

EndNote

Ris

BibTeX

As the most abundant natural renewable aromatic polymers, lignins can be used to produce bio-fuels and value-added chemicals. Lignins attract more and more attention in energy and chemical industrials, and have the potential to substitute petroleum as raw materials to some extent. To realize the application of lignins, the chemical composition and structural characteristics should be fully understood. However, the ubiquitous crosslinks among lignins, cellulose and hemicelluloses are complex, resulting in the incomplete separation of lignin from biomass.In addition, diverse sources and complex structures embarrass the development of investigation and application.With revealing the chemical compositions of lignins as the starting point, methodologies and technologies, such as pretreatment, separation, transformation and analysis, for the structural investigation of lignins are compared, and the up-to-date advances, including monolignols and linkages of lignins, biosynthetic processes, the reactions of model compounds and lignification theories are importantly reviewed. The applications of lignins and their derivatives in the fields of polymer blends, resins, carbon fiber, activated carbon and other chemicals along with related difficult problems are pointed out. Contents
1 Introduction
2 Methods of structural investigation
2.1 Methods of pretreatment and separation of lignins from biomass
2.2 Analysis methods
3 Progress in structural investigation of lignins
3.1 Molecular mass and molecular mass distribution
3.2 Monolignols
3.3 Linkages
3.4 Lignin/phenolic carbohydrate complexes
3.5 Macromolecules and stereochemistry of lignins
3.6 Biosynthesis
3.7 Lignin-related model compounds
3.8 Models of lignins
3.9 Computer-added designing and simulation
3.10 Theories of lignification
4 Applications
4.1 Additives and blends
4.2 Lignin-based resins
4.3 Carbon fiber and activated carbon
4.4 Value-added chemicals
5 Conclusions and prospectives

CLC Number: 

[1] Baurhoo B, Ruiz-Feria C A, Zhao X. Anim. Feed Sci. Technol., 2008, 144: 175-184
[2] Freudenberg K. Constitution and Biosynthesis of Lignins. Bertin Heidelberg, New York: Springer, 1968
[3] Chen Y R, Sarkanen S. Cellulose Chem. Technol., 2006, 40: 149-163
[4] Davin L B, Lewis N G. Curr. Opin. Biotech., 2005, 16: 407-415
[5] Chen Y R, Sarkanen S. Phytochemistry, 2010, 71: 453-462
[6] Ralph J, Brunow G, Harris P J, Dixon R A, Schatz P F, Boerjan W. Recent Advances in Polyphenol Research (Eds. Fouad D, Vincenzo L). Blackwell, 2008. 36-66
[7] Wang H, de Vries Frits P, Jin Y. J. Environ. Sci., 2009, 21: 488-493
[8] Maziero P, Neto M O, Machado D, Batista T, Cavalheiro C C S, Neumann M G, Craievich A F, Rocha G J M, Polikarpov I, Gonalves A R. Ind. Crop. Prod., 2012, 35: 61-69
[9] Rencoret J, Gutiérrez A, L Nieto, Jiménez-Barbero J, Faulds C B, Kim H, Ralph J, MartínezÁ T, del Río J C. Plant Physiology, 2011, 155: 667-682
[10] Nakashima J, Chen F, Jackson L, Shadle G, Dixon R A. New Phytol., 2008, 179: 738-750
[11] Ruel K, Berrio-Sierra J, Derikvand M M, Pollet B, Thévenin J, Lapierre C, Jouanin L, Joseleau J P. New Phytol., 2009, 184: 99-113
[12] Gierlinger N, Schwanninger M. Spectroscopy, 2007, 21: 69-89
[13] Shi C, Koch G, Ouzunova M, Wenzel G, Zein I, Lübberstedt T. Plant Mol. Biol., 2006, 62: 697-714
[14] Davison B H, Drescher S R, Tuskan G A, Davis M F, Nghiem N P. Appl. Biochem. Biotechnol., 2006, 129/132: 427-435
[15] Rencoret J, Marques G, Gutiérrez A, Ibarra D, Li J, Gellerstedt G, Santos J I, Jiménez-Barbero J, Martínez A T, del Río J C. Holzforschung, 2008, 62: 514-526
[16] Tapin S, Sigoillot J C, Asther M, Petit-Conil M. J. Agric. Food Chem., 2006, 54: 3697-3703
[17] Hu Z, Yeh T F, Chang H, Matsumoto Y, Kadla J F. Holzforschung, 2006, 60, 389-397
[18] Lin S Y, Lin I S. Ullmann's Encylcopedia of Industrial Chemistry. VCH: Weinheim, Germany, 1990. 305
[19] Savage D. Metso LignoBoost: Lignin from Black Liquor, Results Pulp & Paper, 2009, 3: 22-23
[20] Mosier N, Wyman C, Dale B, Elander R, Lee Y Y, Holtzapple M, Ladisch M. Bioresour. Technol., 2005, 96: 673-686
[21] Scholze B, Hanser C, Meier D J. Anal. Appl. Pyrolysis, 2001, 58/59: 387-400
[22] Kim J Y, Shin E J, Eom I Y, Won K, Kim Y H, Choi D, Choi I G, Choi J W. Bioresour. Technol., 2011, 102: 9020-9025
[23] Capanema E A, Balakshin M Y, Chen C L. Holzforschung, 2004, 58: 464-472
[24] Zakzeski J, Bruijnincx P C, Jongerius A L, Weckhuysen B M. Chem. Rev., 2010, 110: 3552-3599
[25] Hatakeyama H, Hatakeyama T. Adv. Polym. Sci., 2010, 232: 1-63
[26] Holladay J E, Bozell J J, White J F, Johnson D. Top Value Added Candidates from Biomass, Volume II: Results of Screening for Potential Candidates from Biorefinery Lignin. Pacific Northwest National Laboratory, Richland, WA, 2007
[27] Baumberger S, Abaecherli A, Fasching M, Gellerstedt G, Gosselink R, Hortling B, Li J, Saake B, de Jong E. Holzforschung, 2007, 61: 459-468
[28] Xie X, Goodell B, Zhang D, Nagle D C, Qian Y, Peterson M L, Jellison J. Bioresour. Technol., 2009, 100: 1797-1802
[29] Sun X F, Jing Z X, Fowler P, Wu Y G, Rajaratnam M. Ind. Crop. Prod., 2011, 33: 588-598
[30] Takada D, Ehara K, Saka S. J. Wood Sci., 2004, 50: 253-259
[31] Kilpelaeinen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos D S. J. Agric. Food. Chem., 2007, 55: 9142-9148
[32] Heikkinen S, Toikka M M, Karhunen T, Kilpelainen I A. J. Am. Chem. Soc., 2003, 125: 4362-4367
[33] Capanema E A, Balakshin M Y, Chen C L, Gratzl J S, Gracz H. Holzforschung, 2001, 54: 302-308
[34] Balakshin M Y, Capanema E A, Chen C L, Gracz H. J. Agric. Food Chem., 2003, 51: 6116-6127
[35] Capanema E A, Balakshin M Y, Chen C L, Gratzl J S, Gracz H. Proc. 7th Brazilian Symp. Chem. of Lignin and Other Wood Components, Brazil, 61-68
[36] Lu F, Ralph J. Plant J., 2003, 35: 535-544
[37] Ralph J, Akiyama T, Kim H, Lu F, Schatz P F, Marita J M, Ralph S A, Reddy M S S, Chen F, Dixon R A. J. Biol. Chem., 2006, 281: 8843-8853
[38] Koda K, Gaspar A R, Yu L, Argyropoulos D S. Holzforschung, 2005, 59: 612-619
[39] Lundquist K, Langer V, Li S, Stomberg R. Proceedings of the Twelfth International Symposium on Wood and Pulping Chemistry. Madison: U. Wisconsin-Madison Press, 2003. 239-244
[40] Boerjan W, Ralph J, Baucher M. Ann. Rev. Plant Biol., 2003, 54: 519-546
[41] Van Parijs F R D, Morreel K, Ralph J, Boerjan W, Merks R M H. Plant Physiol., 2010, 153: 1332-1344
[42] Ritter S K. Chem. Eng. News, 2007, 85: 15-24
[43] Baumberger S, Dole P, Lapierre C. J. Agric. Food Chem., 2002, 50: 2450-2453
[44] Brunow G. Biorefineries-Industrial Processes and Products. (Eds. Kamm B, Gruber P R, Kamm M), Wiley-VCH Verlag, 2006. 151
[45] Da Costa Sousa L. Chundaway S P S, Balan V, Dale B E. Curr. Opin. Biotechnol., 2009, 20: 339-347
[46] Fujimoto A, Matsumoto Y, Meshitsuka G, Chang H. J. Wood Sci., 2005, 51: 89-91
[47] Capanema E A, Balakshin M Y, Katahira R, Chang H, Jameel H. Structural Variations in Hardwood Lignins. Proc. 14th Intern. Symp. Wood Fibre Pulping Chem., CD-ROM. Durban, South Africa, 2007
[48] Balakshin M Y, Capanema E A, Chang H. Holzforschung, 2007, 61: 1-7
[49] Holtman K M, Chang H, Kadla J F. J. Agric. Food Chem., 2004, 52: 720-726
[50] Guerra A, Filpponen I, Lucia L A, Argyropoulos D S. J. Agric. Food Chem., 2006, 54: 9696-9705
[51] Guerra A, Filppone I, Lucia L A, Saquing C, Baumberger S, Argyropoulos D S. J. Agric. Food Chem., 2006, 54: 5939-5947
[52] Liitiä T M, Maunu S L, Hortling B, Toikka M, Kilpeläinen I. J. Agric. Food. Chem., 2003, 51: 2136-2143
[53] Scholze B, Meier D. J. Anal. Appl. Pyrolysis, 2001, 60: 41-54
[54] Hughes P. Cellulosic Ethanol——The Sustainable Fuel, Lignol Energy. Burnaby, BC, Canada, 2009
[55] Lora J H, Glasser W G. J. Polym. Environ., 2002, 10: 39-48
[56] Tsujino J, Kawamoto H, Saka S. Wood Sci. Technol., 2004, 37: 299-307
[57] Wahyudiono, Kanetake T, Sasaki M, Goto M. Chem. Eng. Technol., 2007, 30: 1113-1122
[58] Klein M T, Virk P S. Energy Fuels, 2008, 22: 2175-2182
[59] Fort D A, Remsing R C, Swatloski R P, Moyna P, Guillermo M, Rogers R D. Green Chem., 2007, 9: 63-69
[60] Swatloski R P, Spear S K, Holbrey J D, Rogers R D. J. Am. Chem. Soc., 2002, 124: 4974-4975
[61] Lee S H, Doherty T V, Linhardt R J, Dordick J S. Biotechnol. Bioeng., 2009, 102: 1368-1376
[62] Zhu S J. Chem. Technol. Biotechnol., 2008, 83: 777-779
[63] Sun N, Rahman M, Qin Y, Maxim M L, Rodríquez H, Rogers R D. Green Chem., 2009, 11: 646-655
[64] Pu Y Q, Jiang N, Ragauskas A J. J. Wood Chem. Technol., 2007, 27: 23-33
[65] Blanchard L A, Brennecke J F. Ind. Eng. Chem. Res., 2001, 40: 287-292
[66] Blanchard L A, Hancu D, Beckman E J, Brennecke J F. Nature, 1999, 399: 28-29
[67] Fasching M, Schroeder P, Wollboldt R P, Weber H K, Sixta H. Holzforschung, 2007, 62: 15-23
[68] Li J, Gellerstedt G, Toven K. Bioresour. Technol., 2009, 100: 2556-2561
[69] Wu S B, Argyropoulos D S. J. Pulp Paper Sci., 2003, 29: 235-240
[70] Argyropoulos D S, Sun Y, Paluš E. J. Pulp Paper Sci., 2002, 28: 50-54
[71] 王少光(Wang S G), 武书彬(Wu S B), 郭伊丽(Guo Y L), 郭秀强(Guo X Q). 华南理工大学学报(J. South China Univ. Technol. ), 2006, 34(12): 101-104
[72] 武书彬(Wu S B), 李梦实(Li M S). 林产化学与工业(Chem. Ind. Forest Prod. ), 2006, 26(1): 104-108
[73] 王少光(Wang S G), 武书彬(Wu S B), 郭秀强(Guo X Q), 郭伊丽(Guo Y L). 华南理工大学学报(J. South China Univ. Technol. ), 2006, 34(3): 39-42
[74] Lou R, Wu S B. J. Cellulose Chem. Technol., 2008, 42: 371-380
[75] 武书彬(Wu S B), 娄瑞(Lou R), 赵增立(Zhao Z L). 造纸科学与技术(Paper Sci. Technol. ), 2008, 27(6): 87-92
[76] 娄瑞(Lou R), 武书彬(Wu S B), 谭杨(Tan Y), 赵增立(Zhao Z L). 南京理工大学学报(J. Nanjing Univ. Sci. Technol. ), 2009, 33(6): 824-828
[77] Yang Q, Wu S B, Lou R, Lv G J. J. Anal. Appl. Pyrol., 2010, 87: 65-69
[78] 娄瑞(Lou R), 武书彬(Wu S B), 吕高金(Lv G J), 杨卿(Yang Q). 华南理工大学学报(J. South China Univ. Technol. ), 2010, 38(8): 1-6
[79] Lou R, Wu S B, Lv G J. J. Anal. Appl. Pyrolysis, 2010, 89: 191-196
[80] Lou R, Wu S B, Lv G J. BioResources, 2010, 5: 827-837
[81] Lou R, Wu S B. Appl. Energ., 2011, 88: 316-322
[82] Donaldson L, Hague J, Snell R. Holzforschung, 2001, 55: 379-385
[83] Sun S N, Li M F, Yuan T Q, Xu F, Sun R C. Ind. Crop. Prod., 2012, 37: 51-60
[84] Mansouri N E, Salvadó J. J. Ind. Crops Prod., 2007, 26: 116-124
[85] Capanema E, Balakshin M Y, Heerman M L, Yeh T F, Yu Q, Nelson C D, Mckeand S E, Li B, Jameel H, Chang M, Mullin T J. Chemical Properties in CAD Deficient Pine and Their Effect on Pulping. Proc. 13th Intern. Symp. Wood, Fibre Pulping Chem., New Zealand, 2005. 173-180
[86] Capanema E A, Balakshin M Y, Kadla J F, Chang H. O Papel, 2007, N5: 74-79
[87] Vester J, Felby C, Nielsen O F, Barsberg S. Appl. Spectrosc., 2004, 58: 404-409
[88] Saariaho A M, Jaaskelainen A S, Matousek P, Towrie M, Parker A W, Vuorinen T. Holzforschung, 2004, 58: 82-90
[89] Saariaho A M, Argyropoulos D S, Jaaskelainen A S, Vuorinen T. Vib. Spectrosc., 2005, 37: 111-121
[90] Barsberg S, Matousek P, Towrie M. Macromol. Biosci., 2005, 5: 743-752

[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[4] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[5] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[6] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[7] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[8] Yang Guodong, Yuan Gaoqian, Zhang Jingzhe, Wu Jinbo, Li Faliang, Zhang Haijun. Porous Electromagnetic Wave Absorbing Materials [J]. Progress in Chemistry, 2023, 35(3): 445-457.
[9] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[10] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[11] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[12] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[13] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[14] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[15] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.