中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (05): 799-808 DOI: 10.7536/PC121022 Previous Articles   Next Articles

• Review •

Application of Fluorescent Gold Nanoclusters for the Determination of Small Molecules

Yan Fei, Liu Xiangyang, Zhao Dongjiao, Bao Weixing, Dong Xiaoping, Xi Fengna*   

  1. 1. Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Zhejiang 310018, China
  • Received: Revised: Online: Published:
PDF ( 1618 ) Cited
Export

EndNote

Ris

BibTeX

Gold nanoclusters are composed of several to a hundred atoms. As a kind of fluorescent materials, gold nanoclusters have recently attracted significant attention because they provide the link between atom and nanoparticle. Gold nanoclusters exhibit unique optical properties due to quantum effect as their sizes are close to the Femi wavelength of electrons. Fluorescent gold nanoclusters have attractive characteristics such as small size, good water solubility, remarkable photophysical properties, large surface area, and facile surface modification. Recently, a variety of synthesis approaches for the preparation of water-soluble fluorescent gold nanoclusters have been developed, which significantly facilitate the understanding of their properties and applications. It has been proven that the fluorescent properties of gold nanoclusters could be adjustable by using suitable ligands and biocompatible scaffolds. Until now, fluorescence gold nanoclusters have shown potential applications in the fields of biosensors, nano-labeling, molecular imaging and optoelectronics. As a novel class of fluorescent probe, fluorescent gold nanoclusters have been used for the sensing of small molecules. In this review, we highlight the recent advances in fluorescene determination of metal ions, anions, and the biological organic molecules including hydrogen peroxide, glucose, glutathione, adenosine triphosphate, and amino acids. The current challenges and future perspectives in this research area are also outlined. Contents
1 Introduction
2 Application of gold nanoclusters in sensing of small molecules
2.1 Detection of metal ions
2.2 Detection of anions
2.3 Detection of small organic molecules
3 Conclusion and outlook

CLC Number: 

[1] Zheng J, Zhang C, Dickson R M. Phys. Rev. Lett., 2004, 93: art. no. 077402
[2] Mooradian A. Phys. Rev. Lett., 1969, 22: 185-187
[3] Huang C C, Yang Z, Lee K H, Chang H T. Angew. Chem. Int. Ed., 2007, 46: 6824-6828
[4] Zheng J, Petty J T, Dickson R M. J. Am. Chem. Soc., 2003, 125: 7780-7781
[5] Chen W Y, Lan G Y, Chang H T. Anal. Chem., 2011, 83: 9450-9455
[6] Xie J, Zheng Y, Ying J Y. J. Am. Chem. Soc., 2009, 131: 888-889
[7] Zheng J, Nicovich P R, Dickson R M. Annu. Rev. Phys. Chem., 2007, 58: 409-431
[8] Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sndaresan G, Wu A M, Gambhir S S, Weiss S. Science, 2005, 307: 538-544
[9] Yan J, Estévez M C, Smith J E, Wang K, He X, Wang L, Tan W. Nanotoday, 2007, 2: 44-50
[10] Chatterjee D K, Gnanasammandhan M K, Zhang Y. Small, 2010, 6: 2781-2795
[11] Baker S N, Baker G A. Angew. Chem. Int. Ed., 2010, 49: 6726-6744
[12] 杨小超(Yang X C), 钱俊臻(Qian J Z), 万巧玲(Wan Q L), 莫志宏(Mo Z H). 化学进展(Progress in Chemistry), 2007, 19(5): 689-694
[13] 杨群峰(Yang Q F), 刘建云(Liu J Y), 陈华萍(Chen H P), 王显祥(Wang X X), 黄乾明(Huang Q M), 单志(Shan Z). 化学进展(Progress in Chemistry), 2011, 23(5): 879-891
[14] 任娟(Ren J), 代雯乐(Dai W L), 付欣(Fu X), 苏梦(Su M), 蔡晶晶(Cai J J), 马占芳(Ma Z F). 化学通报(Chemistry), 2011, 74(8): 683-687
[15] 刘钊(Liu Z), 金申申(Jin S S), 朱满洲(Zhu M Z). 化学进展(Progress in Chemistry), 2011, 23(10): 2055-2064
[16] Shiang Y C, Huang C C, Chen W Y, Chen P C, Chang H T. J. Mater. Chem., 2012, 22: 12972-12982
[17] Lin C A J, Lee C H, Hsieh J T, Wang H H, Li J K, Shen J L, Chan W H, Yeh H I, Chang W H. J. Med. Biol. Eng., 2009, 29: 276-283
[18] Jin R. Nanoscale, 2010, 2: 343-362
[19] Shang L, Dong S, Nienhaus G U. Nano Today, 2011, 6: 401-418
[20] Zheng J, Zhou C, Yu M, Liu J. Nanoscale, 2012, 4: 4073-4083
[21] Shang L, Nienhaus G U. Biophys. Rev., 2012, 4(4): 313-322
[22] Xavier P L, Chaudhari K, Baksi A, Pradeep T. Nano Reviews, 2012, 3: art. no. 14767
[23] Xie J, Zheng Y, Ying J Y. Chem. Commun., 2010, 46: 961-963
[24] Hu D, Sheng Z, Gong P, Zhang P, Cai L. Analyst, 2010, 135: 1411-1416
[25] Chai F, Wang T, Li L, Liu H, Zhang L, Su Z, Wang C. Nanoscale Res. Lett., 2010, 5: 1856-1860
[26] Wei H, Wang Z, Yang L, Tian S, Hou C, Lu Y. Analyst, 2010, 135: 1406-1410
[27] Lin Y H, Tseng W L. Anal. Chem., 2010, 82: 9194-9200
[28] Kawasaki H, Yoshimura K, Hamaguchi K, Arakawa R. Anal. Sci., 2011, 27: 591-596
[29] Kawasaki H, Hamaguchi K, Osaka I, Arakawa R. Adv. Funct. Mater., 2011, 21: 3508-3515
[30] Pu K Y, Luo Z, Li K, Xie J, Liu B. J. Phys. Chem. C, 2011, 115: 13069-13075
[31] Paau M C, Lo C K, Yang X, Choi M M F. J. Phys. Chem. C, 2010, 114: 15995-16003
[32] Shang L, Yang L, Stockmar F, Popescu R, Trouillet V, Bruns M, Gerthsen D, Nienhaus G U. Nanoscale, 2012, 4: 4155-4160
[33] Shao C Y, Yuan B, Wang H Q, Zhou Q, Li Y L, Guan Y F, Deng Z X. J. Mater. Chem., 2011, 21: 2863-2866
[34] Cai Y, Yan L, Liu G, Yuan H, Xiao D. Biosens. Bioelectron., 2013, 41:875-879
[35] Chen W, Tu X, Guo X. Chem. Commun., 2009, 1736-1738
[36] Tu X, Chen W, Guo X. Nanotechnology, 2011, 22: art. no. 095701
[37] Durgadas C V, Sharma C P, Sreenivasan K. Analyst, 2011, 136: 933-940
[38] Muhammed M A H, Verma P K, Pal S K, Retnakumari A, Koyakutty M, Nair S, Pradeep T. Chem. Eur. J., 2010, 16: 10103-10112
[39] Lin Z, Luo F, Dong T, Zheng L, Wang Y, Chi Y, Chen G. Analyst, 2012, 137: 2394-2399
[40] He D F, Xiang Y, Wang X, Yu X F. Mater. Res. Bull., 2011, 46: 2418-2421
[41] Liu H, Zhang X, Wu X, Jiang L, Burda C, Zhu J J. Chem. Commun., 2011, 47: 4237-4239
[42] Zheng H Z, Liu L, Zhang Z J, Huang Y M, Zhou D B, Hao J Y, Lu Y H, Chen S M. Spectrochim. Acta A, 2009, 71: 1795-1798
[43] Yuan Z, Peng M, He Y, Yeung E S. Chem. Commun., 2011, 47: 11981-11983
[44] Fang Y M, Song J, Li J, Wang Y W, Yang H H, Sun J J, Chen G N. Chem. Commun., 2011, 47: 2369-2371
[45] Ho J A, Chang H C, Su W T. Anal. Chem., 2012, 84: 3246-3253
[46] Yue Y, Liu T Y, Li H W, Liu Z, Wu Y. Nanoscale, 2012, 4: 2251-2254
[47] Roy S, Palui G, Banerjee A. Nanoscale, 2012, 4: 2734-2740
[48] Liu Y, Ai K, Cheng X, Huo L, Lu L. Adv. Funct. Mater., 2010, 20: 951-956
[49] Yan L, Cai Y, Zheng B, Yuan H, Guo Y, Xiao D, Choi M M F. J. Mater. Chem., 2012, 22: 1000-1005
[50] Shiang Y C, Huang C C, Chang H T. Chem. Commun., 2009, 3437-3439
[51] Jin L, Shang L, Guo S, Fang Y, Wen D, Wang L, Yin J, Dong S. Biosens. Bioelectron., 2011, 26: 1965-1969
[52] Wen F, Dong Y, Feng L, Wang S, Zhang S, Zhang X. Anal. Chem., 2011, 83: 1193-1196
[53] Liu A, Dong W, Liu E, Tang W, Zhu J, Han J. Electrochim. Acta, 2010, 55: 1971-1977
[54] Priya C, Sivasankari G, Narayanan S S. Colloid. Surface. B, 2012, 97: 90-96
[55] Hussain A M P, Sarangi S N, Kesarwani J A, Sahu S N. Biosens. Bioelectron., 2011, 29: 60-65
[56] Chen T H, Tseng W L. Small, 2012, 8: 1912-1919
[57] Tian D, Qian Z, Xia Y, Zhu C. Langmuir, 2012, 28: 3945-3951
[58] Liu J M, Yan X P. Biosens. Bioelectron., 2012, 36: 135-141
[59] Li P H, Lin J Y, Chen C T, Ciou W R, Chan P H, Luo L, Hsu H Y, Diau E W G, Chen Y C. Anal. Chem., 2012, 84: 5484-5488
[60] Wang M, Mei Q, Zhang K, Zhang Z. Analyst, 2012, 137: 1618-1623
[61] He Y, Wang X, Zhu J, Zhong S, Song G. Analyst, 2012, 137: 4005-4009
[62] Cui M L, Liu J M, Wang X X, Lin L P, Jiao L, Zhang L H, Zheng Z Y, Lin S Q. Analyst, 2012, 137: 5346-5356. DOI: 10.1039/c2an36284h
[63] Chen Z, Qian S, Chen X, Gao W, Lin Y. Analyst, 2012, 137: 4356-4361
[64] Wang X, Wu P, Lv Y, Hou X. Microchem. J., 2011, 99: 327-331
[65] Chen Z, Qian S, Chen J, Cai J, Wu S, Cai Z. Talanta, 2012, 94: 240-245
[66] Samari F, Hemmateenejad B, Rezaei Z, Shamsipur M. Anal. Methods, 2012, 4: 4155-4160
[67] Li L, Liu H, Shen Y, Zhang J, Zhu J. Anal. Chem., 2011, 83: 661-665

[1] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[2] Hao Tian, Zimu Li, Changzheng Wang, Ping Xu, Shoufang Xu. Construction and Application of Molecularly Imprinted Fluorescence Sensor [J]. Progress in Chemistry, 2022, 34(3): 593-608.
[3] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[4] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.
[5] Bin Li, Yanyan Fu, Jiangong Cheng. Fluorescent Probes for Detection of Organophosphorus Nerve Agents and Simulants [J]. Progress in Chemistry, 2021, 33(9): 1461-1472.
[6] Xinhua Cao, Qingqing Han, Aiping Gao, Guixia Wang. Supramolecular Gel with Response Towards Gaseous Acid and Organic Amine [J]. Progress in Chemistry, 2021, 33(9): 1538-1549.
[7] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[8] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[9] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.
[10] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[11] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.
[12] Shuang Yang, Xianpeng Yang, Baojun Wang, Lei Wang. Design and Applications of Fluorogenic Nucleic Acid-Based Paper Biosensors [J]. Progress in Chemistry, 2021, 33(12): 2309-2315.
[13] Shicheng Jin, Shuang Yan. Nanostructure Construction and Sensing Mechanism of Metal Oxides for Room Temperature Gas Sensing [J]. Progress in Chemistry, 2021, 33(12): 2348-2361.
[14] Kaiyu Zhang, Guowei Gao, Yansheng Li, Yu Song, Yongqiang Wen, Xueji Zhang. Development and Application of DNA Hydrogel in Biosensing [J]. Progress in Chemistry, 2021, 33(10): 1887-1899.
[15] Lei Zhu, Jianan Wang, Jianwei Liu, Ling Wang, Wei Yan. Applications of Electrospun One-Dimensional Nanomaterials in Gas Sensors [J]. Progress in Chemistry, 2020, 32(2/3): 344-360.