中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (05): 752-760 DOI: 10.7536/PC121021 Previous Articles   Next Articles

• Review •

Silole-Containing Polymer Photovoltaic Donor Materials

Zhang Lihong1, Yu Qingcai2, Wan Junhua*2   

  1. 1. College of Science, Agricultural University of Hebei, Baoding 071001, China;
    2. Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 310012, China
  • Received: Revised: Online: Published:
PDF ( 902 ) Cited
Export

EndNote

Ris

BibTeX

Bulk heterojunction polymer solar cells (PSCs) have attracted much attention in recent years due to their advantages of easy fabrication, simple device structure, low cost, light weight, and capability to be fabricated into flexible devices. However, the maximum power conversion efficiency (PCE) of the present PSCs is still much lower than that of silicon solar cell and need to be further improved for the demand of commercial production. Recent studies indicated that the incorporation of silole (silacyclopentadiene) moiety could effectively improve the crystalline and energy level (HOMO/LUMO) of the corresponding donor-acceptor conjugated polymer, thus remarkably increased the PCE of device. The present review summarizes and analyzes the progress silole-containing congjugated polymer photovoltaic donor materials in the past few years. Some issues to be addressed and hotspots to be further investigated are also presented and discussed. Contents
1 Introduction
2 Silole-containing congjugated polymer photovoltaic donor materials
2.1 2,3,4,5-Substituted silole-containing polymer photovoltaic donor materials
2.2 Dibenzosilole-containing polymer photovoltaic donor materials
2.3 Dithienosilole-containing polymer photovoltaic donor materials
2.4 [JP3]Silaindacenodithiophene-containing polymer photo-voltaic donor materials
3 Concluding remarks

CLC Number: 

[1] Solarmer Energy Breaks Psychological Barrier (2010-08-04).[2012-09-01]. http: //www. solardaily. com/reports/Solarmer_Energy_Breaks_Psychological_Barrier_999. html
[2] Dou L, You J, Yang J, Chen C C, He Y, Murase S, Moriarty T, Emery K, Li G, Yang Y. Nat. Photonics, 2012, 6: 180-185
[3] Yang T, Wang M, Duan C, Hu X, Huang L, Peng J, Huang F, Gong X. Energy Environ. Sci., 2012, 8: 8208-8214
[4] 霍利军(Huo L J), 侯建辉(Hou J H). 中国科学: 化学(Scientia Sinica Chimica), 2012, 42(5): 702-714
[5] Li Y. Acc. Chem. Res., 2012, 45(5): 723-733
[6] 李永舫(Li Y F). 高分子通报(Polymer Bulletin), 2011, 10: 33-49
[7] 刘治田(Liu Z T), 胡钊(Hu Z), 沈陟(Shen Z), 胡双强(Hu S Q), 王子兴(Wang Z X), 戚欣(Qi X). 化学进展(Progress in Chemistry), 2012, 24: 377-384
[8] Wang E, Wang L, Lan L, Luo C, Zhuang W, Peng J, Cao Y. Appl. Phys. Lett., 2008, 92(3): art. no. 033307
[9] Usta H, Lu G, Facchetti A, Marks T J. J. Am. Chem. Soc., 2006, 128(28): 9034-9035
[10] Lu G, Usta H, Risko C, Wang L, Facchetti A, Ratner M A, Marks T J. J. Am. Chem. Soc., 2008, 130(24): 7670-7685
[11] Chen H Y, Hou J, Hayden A E, Yang H, Houk K H, Yang Y. Adv. Mater., 2010, 22(3): 371-375
[12] Morana M, Azimi H, Dennler G, Egelhaaf H J, Scharber M, Forberich K, Hauch J, Gaudiana R, Waller D, Zhu Z, Hingerl K, Van Bavel S S, Loos J, Brabec C J. Adv. Funct. Mater., 2010, 20(7): 1180-1188
[13] Yamaguchi S, Endo T, Uchida M, Izumizawa T, Furukawa K, Tamao K. Chem. Eur. J., 2000, 6(9): 1683-1692
[14] Kunai A, Ohshita J, Iida T, Kanehara K, Adachi A, Okita K. Syn. Met., 2003, 137(2): 1007-1008
[15] Ohshita J, Nodono M, Kai H, Watanabe T, Kunai A, Komaguchi K, Shiotani M, Adachi A, Okita K, Harima Y, Yamashita K, Ishikawa M. Organometallics, 1999, 18(8): 1453-1459
[16] Tamao K, Uchida M, Izumizawa T, Furukawa K, Yamaguchi S. J. Am. Chem. Soc., 1996, 118(47): 11974-11975
[17] Ohshita J, Kai H, Takata A, Lida T, Kunai A, Ohta N, Komaguchi K, Shiotani M, Adachi A, Sakamaki K, Okita K. Organometallics, 2001, 20(23): 4800-4805
[18] Chan K L, McKiernan M J, Towns C R, Holmes A B. J. Am. Chem. Soc., 2005, 127(21): 7662-7663
[19] Kim W, Palilis L C, Uchida M, Kafafi Z H. Chem. Mater., 2004, 16(23): 4681-4686
[20] Liu M S, Luo J, Jen A K Y. Chem. Mater., 2003, 15(18): 3496-3500
[21] Murata H, Kafafi Z H, Uchida M. Appl. Phys. Lett., 2002, 80(2): 189-191
[22] Chen J, Cao Y. Macromol. Rapid Commun., 2007, 17(28): 1714-1742
[23] Usta H, Lu G, Facchetti A, Marks T J. J. Am. Chem. Soc., 2006, 128(28): 9034-9035
[24] Kim D H, Ohshita J, Lee K H, Kunugi Y, Kunai A. Organometallics, 2006, 25(6): 1511-1516
[25] Facchetti A, Yoon M H, Marks T J. Adv. Mater., 2005, 17(14): 1705-1725
[26] Sirringhaus H. Adv. Mater., 2005, 17(20): 2411-2425
[27] Katz H E. Electroanalysis, 2004, 16(22): 1837-1842
[28] Newman C R, Frisbie C D, da Silva Filho D A, Brédas J L, Ewbank P C, Mann K R. Chem. Mater., 2004, 16(23): 4436-4451
[29] Chabinyc M L, Salleo A. Chem. Mater., 2004, 16(23): 4509-4521
[30] Dimitrakopoulos C D, Malenfant P R L. Adv. Mater., 2002, 14(2): 99-117
[31] Hong Y, Lam J W Y, Tang B Z. Chem. Soc. Rev., 2011, 11(40): 5361-5388
[32] 王妍(Wang Y), 罗洁(Luo J), 陈军武(Chen J W), 汪峰(Wang F), 曹镛(Cao Y). 发光学报(Chinese Journal of Luminescence), 2005, 26(4): 456-459
[33] Wang F, Luo J, Yang K, Chen J, Huang F, Cao Y. Macromolecules, 2005, 38(6): 2253-2260
[34] Choulis S A, Nelson J, Kim Y, Poplavskyy D, Kreouzis T, Durrant J R, Bradley D D C. Appl. Phys. Lett., 2003, 83(18): 3812-3814
[35] Pacios R, Nelson J, Bradley D D C, Brabec C J. Appl. Phys. Lett., 2003, 83(23): 4764-4766
[36] Boudreault P L T, Michaud A, Leclerc M A. Macromol. Rapid Commun., 2007, 28(22): 2176-2179
[37] Chen J, Cao Y. Acc. Chem. Res., 2009, 42(11): 1709-1718
[38] Song J, Du C, Li C, Bo Z. J. Polym. Sci. Part A: Polym. Chem., 2011, 49(19): 4267-4274
[39] Ohshita J, Nodono M, Watanabe T, Ueno Y, Kunai A, Harima Y, Yamashita K, Ishikawa M. J. Organomet. Chem., 1998, 553(1): 487-491
[40] Ohshita J. Macromol. Chem. Phys., 2009, 210(17): 1360-1370
[41] Ohshita J, Nodono M, Kai H, Watanabe T, Kunai A, Komaguchi K, Shiotani M, Adachi A, Okita K, Harima Y, Yamashita K, Ishikawa M. Organometallics, 1999, 18(8): 1453-1459
[42] 毛林燕(Mao L Y), 万俊华(Wan J H), 李志芳(Li Z F), 陶兰(Tao L), 邱化玉(Qiu H Y). 化学进展(Progress in Chemistry), 2009, 21(10): 2153-2163
[43] Liao L, Dai L, Smith A, Durstock M, Lu J, Ding J, Tao Y. Macromolecules, 2007, 40(26): 9406-9412
[44] Hou J, Chen H Y, Zhang S, Li G, Yang Y. J. Am. Chem. Soc., 2008, 130(48): 16144-16145
[45] Mühlbacher D, Scharber M, Morana M, Zhu Z, Waller D, Gaudiana R, Brabec C. Adv. Mater., 2006, 18(21): 2884-2889
[46] Huo L, Chen H Y, Hou J, Chen T L, Yang Y. Chem. Commun., 2009, 37: 5570-5572
[47] Coffin R C, Peet J, Rogers J, Bazan G. Nat. Chem., 2009, 1(8): 657-661
[48] Hoven C V, Dang X D, Coffin R C, Peet J, Nguyen T Q, Bazan G C. Adv. Mater., 2010, 22(8): E63-E66
[49] Beaujuge P M, Pisula W, Tsao H N, Ellinger S, Müllen K, Reynolds J R. J. Am. Chem. Soc., 2009, 131(22): 7514-7515
[50] Lin Y, Fan H, Li Y, Zhan X. Adv. Mater., 2012, 24(23): 3087-3106
[51] Zhang M, Fan H, Guo X, He Y, Zhang Z, Min J, Zhang J, Zhao G, Zhan X, Li Y. Macromolecules, 2010, 43(13): 5706-5712
[52] Peet J, Wen L, Byrne P, Rodman S, Forberich K, Shao Y, Drolet N, Gaudiana R, Dennler G, Waller D. Appl. Phys. Lett., 2011, 98(4): art. no. 043301
[53] Zhang M, Guo X, Li Y. Adv. Energy Mater., 2011, 1(4): 557-560
[54] Zhang Z G, Min J, Zhang S, Zhang J, Zhang M, Li Y. Chem. Commun., 2011, 47: 9474-9476
[55] Subramaniyan S, Xin H, Kim F S, Shoaee S, Durrant J R, Jenekhe S A. Adv. Energy Mater., 2011, 1: 854-860
[56] Xin H, Subramaniyan S, Kwon T W, Shoaee S, Durrant J R, Jenekhe S A, Chem. Mater., 2012, 24: 1995-2001
[57] Zhang M, Guo X, Li Y. Macromolecules, 2011, 44(22): 8798-8804
[58] Subramaniyan S, Xin H, Kim F S, Jenekhe S A. Macromolecules, 2011, 44(16): 6245-6248
[59] Min J, Zhang Z G, Zhang S, Zhang M, Zhang J, Li Y. Macromolecules, 2011, 44(19): 7632-7638
[60] Blouin N, Michaud A, Leclerc M A. Adv. Mater., 2007, 19(17): 2295-2300
[61] Zhou J, Wan X, Liu Y, Wang F, Long G, Li C, Chen Y. Macromol. Chem. Phys., 2011, 212(11): 1109-1114
[62] Ding J, Song N, Li Z. Chem. Commun., 2010, 45(46): 8668-8670
[63] Zhang Y, Zou J, Yip H L, Sun Y, Davies J A, Chen K S, Acton O, Jen A K Y. J. Mater. Chem., 2011, 11(21): 3895-3902
[64] Chu T Y, Lu J, Beaupré S, Zhang Y, Pouliot J R, Wakim S, Zhou J, Leclerc M, Li Z, Ding J, Tao Y. J. Am. Chem. Soc., 2011, 133(12): 4250-4253
[65] Hong Y R, Wong H K, Moh L C H, Tan H S, Chen Z K. Chem. Commun., 2011, 17(47): 4920-4922
[66] Cui C, Fan X, Zhang M, Zhang J, Min J, Li Y. Chem. Commun., 2011, 40(47): 11345-11347
[67] He Y, Zhao G, Zhang M, Min J, Li Y. Syn. Met., 2010, 160(9/10): 1045-1049
[68] Wang J Y, Hau S K, Yip H L, Davies J A, Chen K S, Zhang Y, Sun Y, Jen A K Y. Chem. Mater., 2011, 23(3): 765-767
[69] Ashraf R S, Chen Z, Leem D S, Bronstein H, Zhang W, Schroeder B, Geerts Y, Smith J, Watkins S, Anthopoulos T D, Sirringhaus H, de Mello J C, Heeney M, McCulloch L. Chem. Mater., 2011, 23(3): 768-770
[70] Zhou J, Wan X, Liu Y, Long G, Wang F, Li Z, Zuo Y, Li C, Chen Y. Chem. Mater., 2011, 23(21): 4666-4668
[71] Sun Y, Welch G C, Leong W L, Takacs C J, Bazan G C, Heeger A J. Nat. Mater., 2012, 1(11): 44-48

[1] Jin Du, Rui Liao, Xinglin Zhang, Huibin Sun, Wei Huang. The Classification of Electrofluorochromism Materials and Color Change Mechanisms [J]. Progress in Chemistry, 2018, 30(2/3): 286-294.
[2] Lu Mengxia, Zhang Tao, Wang Wen, Ling Qidan. The Research Progress on Naphthalene Diimide Based n-Type Polymer Acceptor Materials [J]. Progress in Chemistry, 2016, 28(6): 872-884.
[3] Lu Xiaomei, Li Jie, Hu Wenbo, Deng Weixing, Fan Quli, Huang Wei. Recent Advances of the Water-Soluble Conjugated Polymer Brushes [J]. Progress in Chemistry, 2016, 28(4): 528-540.
[4] Sun Pengfei, Hou Huanzhi, Fan Quli, Huang Wei. Synthesis and Application of Water-Soluble Conjugated Glycopolymer [J]. Progress in Chemistry, 2016, 28(10): 1489-1500.
[5] Ma Yun, Zhou Yan, Du Wenqi, Miao Zhihui, Qi Zhengjian*. The Application of DNA Biosensor Based on Conjugated Polymers [J]. Progress in Chemistry, 2015, 27(12): 1799-1807.
[6] Chen Yun, Shao Ya, Fan Lijuan. Fluorescent Color Tuning of Conjugated Polymer Materials: Mechanisms and Methods [J]. Progress in Chemistry, 2014, 26(11): 1801-1810.
[7] Ren Xiaojie, Lu Xiaomei, Fan Quli, Huang Wei. Conjugated Polymers with Two-Photon Absorption for Bioimaging [J]. Progress in Chemistry, 2013, 25(10): 1739-1750.
[8] Chen Zhouqun, Ma Chang-Qi. Synthesis of Poly(3-Alkylthiophene)s [J]. Progress in Chemistry, 2013, 25(07): 1166-1176.
[9] Cai Xiaohui, Shi Lin, Liu Xingfen*, Huang Yanqin, Fan Quli, Huang Wei*. Functionalized Conjugated Polymers and Their Application in the Biological and/or Chemical Analysis [J]. Progress in Chemistry, 2013, 25(06): 975-989.
[10] Wang Wei, Zhou Minglu, Liang Luying, Wang Wen*, Ling Qidan*. Application of Multifunctional and Crosslinkable Materials in Polymer Solar Cells [J]. Progress in Chemistry, 2013, 25(0203): 350-362.
[11] Zhang Huijing, Hou Xin. Development of Organic Polymer/Inorganic Semiconductor Hybrid Solar Cells [J]. Progress in Chemistry, 2012, 24(11): 2106-2115.
[12] Liu Zhitian, Hu Zhao, Shen Zhi, Hu Shuangqiang, Wang Zixing, Qi Xin. Optoelectronic Properties of Silole-Containing Polymers [J]. Progress in Chemistry, 2012, 24(0203): 377-384.
[13] Gao Yurong, Ma Tingli. Bulk Heterojunction Polymer Solar Cells [J]. Progress in Chemistry, 2011, 23(5): 991-1013.
[14] Yang Zhenglong, Bu Yilong, Chen Qiuyun. High Efficiency Low Band Gap Conjugated Polymer Materials for Solar Cells [J]. Progress in Chemistry, 2011, 23(12): 2607-2616.
[15] Zhu Chunlei, Yang Qiong, Liu Libing, Wang Shu. Conjugated Polymers for Sensitive Chemical Sensors [J]. Progress in Chemistry, 2011, 23(10): 1993-2002.