中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC120955 Previous Articles   Next Articles

Metals Homeostasis and Related Proteins in Alzheimer’s Disease

Lü Xiaoping, Tan Xiangshi*   

  1. Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
  • Received: Revised: Online: Published:
PDF ( 1378 ) Cited
Export

EndNote

Ris

BibTeX

Alzheimer’s disease (AD) is a kind of neurodegenerative diseases often found in old people. The characteristic pathological features of Alzheimer’s disease are senile plaques, neurofibrillary tangles, the loss of neurons,and granulovacuolar degeneration. Though the mechanism of Alzheimer’s disease is very complicated and not understood clearly, the metal homeostasis,which amyloid beta, amyloid precursor protein and metallothionein-3 participated in, is associated with the development of Alzheimer’s disease. The transitional metals, such as copper and zinc, play a key role in the physiologic function. Abnormally high levels of metals were found in the brain of Alzheimer’s disease patients compared with the healthy people. The aberrant of metal homeostasis may be one of the reasons that induce Alzheimer’s disease. The imbalance of metal homeostasis in the brain of Alzheimer’s disease leads to the aggregation of amyloid beta and the generation of reactive oxygen species. The copper can generate reactive oxygen species via Fenton type reaction, resulting in toxicity to the cells. Metallothionein-3, as a metal homeostasis regulator, can protect against the neuronal toxicity of Aβ by preventing copper-mediated Aβ aggregation, abolishing the production of reactive oxygen species(ROS). This review focuses on the AD research progress regarding the metal homeostasis regulation with some related proteins.

Contents
1 Introduction
2 Metals homeostasis in the brain and Alzheimer’s disease
2.1 Copper homeostasis and Alzheimer’s disease
2.2 Zinc homeostasis and Alzheimer’s disease
2.3 Iron homeostasis and Alzheimer’s disease
3 Amyloid beta and Alzheimer’s disease
4 Amyloid precursor protein and Alzheimer’s disease
5 Metallothionein-3 and Alzheimer’s disease
6 Outlook

CLC Number: 

[1] Maurer K, Volk S, Gerbaldo H. Lancet, 1997, 349: 1546-1549
[2] Minati L, Edginton T, Bruzzone M G, Giaccone G. American Journal of Alzheimer's Disease and Other Dementias, 2009, 24: 95-121
[3] Robert P, Ferris S, Gauthier S, Ihl R, Winblad B, Tennigkeit F. Alzheimer's Research & Therapy, 2010, 2: 24-24
[4] Piedrahita D, Hernández I, López-Tobón A, Fedorov D, Obara B, Manjunath B S, Boudreau R L, Davidson B, LaFerla F, Gallego-Gómez J, Kosik K S, Cardona-Gómez G. Journal of Neuroscience, 2010, 30: 13966-13976
[5] Kurata T, Miyazaki K, Kozuki M, Morimoto N, Ohta Y, Ikeda Y, Abe K. Neurological Research, 2012, 34: 601-610
[6] Sims N R, Bowen D M, Smith C C T, Flack R H A, Davison A N, Snowden J S, Neary D. Lancet, 1980, 1: 333-335
[7] Thompson P M, Hayashi K M, de Zubicaray G, Janke A L, Rose S E, Semple J, Herman D, Hong M S, Dittmer S S, Doddrell D M, Toga A W. Journal of Neuroscience, 2003, 23: 994-1005
[8] Lovell M A, Robertson J D, Teesdale W J, Campbell J L, Markesbery W R. Journal of the Neurological Sciences, 1998, 158: 47-52
[9] Barnham K J, Bush A I. Current Opinion in Chemical Biology, 2008, 12: 222-228
[10] Barnham K J, McKinstry W J, Multhaup G, Galatis D, Morton C J, Curtain C C, Williamson N A, White A R, Hinds M G, Norton R S, Beyreuther K, Masters C L, Parker M W, Cappai R. Journal of Biological Chemistry, 2003, 278: 17401-17407
[11] Chen W T, Liao Y H, Yu H M, Cheng I H, Chen Y R. Journal of Biological Chemistry, 2011, 286: 9646-9656
[12] Zatta P Drago D, Bolognin S, Sensi S L. Trends in Pharmacological Sciences, 2009, 30: 346-355
[13] Faller P. ChemBioChem, 2009, 10: 2837-2845
[14] Adlard P A, Bush A I. Journal of Alzheimer's Disease, 2006, 10: 145-163
[15] Franz K J. Nature Chemical Biology, 2008, 4: 85-86
[16] Viles J H, Cohen F E, Prusiner S B, Goodin D B, Wright P E, Dyson H J. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96: 2042-2047
[17] Hart P J, Nersissian A M, Herrmann R G, Nalbandyan R M, Valentine J S, Eisenberg D. Protein Science, 1996, 5: 2175-2183
[18] Squitti R, Lupoi D, Pasqualetti P, Dal Forno G, Vernieri F, Chiovenda P, Rossi L, Cortesi M. Cassetta E, Rossini P M. Neurology, 2002, 59: 1153-1161
[19] Crouch P J, Barnham K J, Bush A I, White A R. Drug News & Perspectives, 2006, 19: 469-474
[20] Budimir A. Acta Pharmaceutica, 2011, 61: 1-14
[21] Desai V, Kaler S G. American Journal of Clinical Nutrition, 2008, 88: 855S-858S
[22] Bush A I, Pettingell W H, Multhaup G, Paradis M D, Vonsattel J P, Gusella J F, Beyreuther K, Masters C L, Tanzi R E. Science, 1994, 265: 1464-1467
[23] Huang X D, Atwood C S, Hartshorn M A, Multhaup G, Goldstein L E, Scarpa R C, Cuajungco M P, Gray D N, Lim J, Moir R D, Tanzi R E, Bush A I. Biochemistry, 1999, 38: 7609-7616
[24] Hureau C, Faller P. Biochimie, 2009, 91: 1212-1217
[25] Ebadi M, Elsayed M A, Aly M H M. Biological Signals, 1994, 3: 123-126
[26] Frederickson C J. International Review of Neurobiology, 1989, 31: 145-238
[27] Bunker V W, Hinks L J, Stansfield M F, Lawson M S, Clayton B E. American Journal of Clinical Nutrition, 1987, 46: 353-359
[28] Brewer G J, Kanzer S H, Zimmerman E A, Molho E S, Celmins D F, Heckman S M, Dick R. American Journal of Alzheime's Disease and Other Dementias, 2010, 25: 572-575
[29] Lovell M A, Smith J L, Markesbery W R. Journal of Neuropathology and Experimental Neurology, 2006, 65: 489-498
[30] Giannozzi P, Jansen K, La Penna G, Minicozzi V, Morante S, Rossi G, Stellato F. Metallomics, 2012, 4: 156-165
[31] Lim K H, Kim Y K, Chang Y T. Biochemistry, 2007, 46: 13523-13532
[32] Talmard C, Guilloreau L, Coppel Y, Mazarguil H, Faller P. ChemBioChem, 2007, 8: 163-165
[33] Cuajungco M P, Faget K Y. Brain Research Reviews, 2003, 41: 44-56
[34] Lee J Y, Cole T B, Palmiter R D, Suh S W, Koh J Y. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 7705-7710
[35] Sensi S L, Paoletti P, Bush A I, Sekler I. Nature Reviews Neuroscience, 2009, 10: 780-791
[36] Meloni G, Sonois V, Delaine T, Guilloreau L, Gillet A, Teissie J, Faller P, Vasak M. Nature Chemical Biology, 2008, 4: 366-372
[37] Adlard P A, Parncutt J M, Finkelstein D I, Bush A I. Journal of Neuroscience, 2010, 30: 1631-1636
[38] Friedlich A L, Lee J Y, van Groen T, Cherny R A, Volitakis I, Cole T B, Palmiter R D, Koh J Y, Bush A I. Journal of Neuroscience, 2004, 24: 3453-3459
[39] Takeda A, Yakugaku Z. Journal of the Pharmaceutical Society of Japan, 2004, 124: 577-585
[40] Liu B, Moloney A, Meehan S, Morris K, Thomas S E, Serpell L C, Hider R, Marciniak S J, Lomas D A, Crowther D C. Journal of Biological Chemistry, 2011, 286: 4248-4256
[41] Goodman L. Journal of Nervous and Mental Disease, 1953, 118: 97-130
[42] Rival T, Page R M, Chandraratna D S, Sendall T J, Ryder E, Liu B, Lewis H, Rosahl T, Hider R, Camargo L M, Shearman M S, Crowther D C, Lomas D A. European Journal of Neuroscience, 2009, 29: 1335-1347
[43] Connor J R, Snyder B S, Beard J L, Fine R E, Mufson E J. Journal of Neuroscience Research, 1992, 31: 327-335
[44] Good P F, Perl D P, Bierer L M, Schmeidler J. Annals of Neurology, 1992, 31: 286-292
[45] Yamamoto A, Shin R W, Hasegawa K, Naiki H, Sato H, Yoshimasu F, Kitamoto T. Journal of Neurochemistry, 2002, 82: 1137-1147
[46] Finch C E. Neurobiology of Aging, 2005, 26: 281-291
[47] Thinakaran G, Koo E H. Journal of Biological Chemistry, 2008, 283: 29615-29619
[48] Mingeot-Leclercq M P, Lins L, Bensliman M, van Bambeke F, van der Smissen P, Peuvot J, Schanck A, Brasseur R. Chemistry and Physics of Lipids, 2002, 120: 57-74
[49] Citron M, Oltersdorf T, Haass C, McConlogue L, Hung A Y, Seubert P, Vigopelfrey C, Lieberburg I, Selkoe D J. Nature, 1992, 360: 672-674
[50] Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird T D, Hardy J, Hutton M, Kukull W, Larson E, LevyLahad E, Viitanen M, Peskind E, Poorkaj P, Schellenberg G, Tanzi R, Wasco W, Lannfelt L, Selkoe D, Younkin S. Nature Medicine, 1996, 2: 864-870
[51] Kowalska A. Neurologia Ineurochirurgia Polska, 2004, 38: 405-411
[52] Balakrishnan R, Parthasarathy R, Sulkowski E. Journal of Peptide Research, 1998, 51: 91-95
[53] Walsh D M, Klyubin I, Fadeeva J V, Cullen W K, Anwyl R, Wolfe M S, Rowan M J, Selkoe D J. Nature, 2002, 416: 535-539
[54] Atwood C S, Obrenovich M E, Liu T, Chan H, Perry G, Smith M A, Martins R N. Brain Research Reviews, 2003, 43: 1-16
[55] Atwood C S, Huang X D, Moir R D, Tanzi R E, Bush A I. Metal Ions in Biological Systems, 1999, 36: 309-364
[56] Gentleman S M, Greenberg B D, Savage M J, Noori M, Newman S J. Roberts G W, Griffin W S T, Graham D I. NeuroReport, 1997, 8: 1519-1522
[57] Shivers B D, Hilbich C, Multhaup G, Salbaum M, Beyreuther K, Seeburg P H. EMBO Journal, 1988, 7: 1365-1370
[58] Kowalik-Jankowska T, Ruta-Dolejsz M, Wisniewska K, Lankiewicz L. Journal of Inorganic Biochemistry, 2002, 92: 1-10
[59] Eury H, Bijani C, Faller P, Hureau C. Angewandte Chemie-International Edition, 2011, 50: 901-905
[60] Atwood C S, Scarpa R C, Huang X D, Moir R D, Jones W D, Fairlie D P, Tanzi R E, Bush A I. Journal of Neurochemistry, 2000, 75: 1219-1233
[61] Chen T, Wang X, He Y, Zhang C, Wu Z, Liao K, Wang J, Guo Z. Inorganic Chemistry, 2009, 48: 5801-5809
[62] Necula M, Kayed R, Milton S, Glabe C G. Journal of Biological Chemistry, 2007, 282: 10311-10324
[63] Faller P, Hureau C, Dalton Transactions, 2009, 1080-1094
[64] Barnham K J, Cappai R, Beyreuther K, Masters C L, Hill A F. Trends in Biochemical Sciences, 2006, 31: 465-472
[65] Murakami K, Irie K, Ohigashi H, Hara H, Nagao M, Shimizu T, Shirasawa T. Journal of the American Chemical Society, 2005, 127: 15168-15174
[66] Noy D, Solomonov I, Sinkevich O, Arad T, Kjaer K, Sagi I. Journal of the American Chemical Society, 2008, 130: 1376-1383
[67] Geng J, Zhao C, Ren J, Qu X. Chemical Communications, 2010, 7187-7189
[68] Geng J, Li M, Wu L, Ren J, Qu X. Journal of Medicinal Chemistry, 2012, 55: 9146-9155
[69] White A R, Huang X D, Jobling M F, Barrow C J, Beyreuther K, Masters C L, Bush A I, Cappai R. Journal of Neurochemistry, 2001, 76: 1509-1520
[70] Leuner K, Schuett T, Kurz C, Eckert S H, Schiller C, Occhipinti A, Mai S, Jendrach M, Eckert G P, Kruse S E, Palmiter R D, Brandt U, Droese S, Wittig I, Willem M, Haass C, Reichert A S, Mueller W E. Antioxidants & Redox Signaling, 2012, 16: 1421-1433
[71] Nakamura M, Shishido N, Nunomura A, Smith M A, Perry G, Akutsu H, Hayashi T. Free Radical Research, 2010, 44: 734-741
[72] Tabner B J, El-Agnaf O M A, Turnbull S, German M J, Paleologou K E, Hayashi Y, Cooper L J, Fullwood N J, Allsop D. Journal of Biological Chemistry, 2005, 280: 35789-35792
[73] Schoneich C. Redox-Active Metals in Neurological Disorders, 2004, 1012: 164-170
[74] O'Brien R J, Wong P C. Annual Review of Neuroscience, 2011, 34: 185-204
[75] Nikolaev A, McLaughlin T, O'Leary D D M, Tessier-Lavigne M. Nature, 2009, 457: 981-989
[76] Duce J A, Tsatsanis A, Cater M A, James S A, Robb E, Wikhe K, Leong S L, Perez K, Johanssen T, Greenough M A, Cho H H, Galatis D, Moir R D, Masters C L, McLean C, Tanzi R E, Cappai R, Barnham K J, Ciccotosto G D, Rogers J T, Bush A I. Cell, 142: 857-867
[77] Zhang H, Ma Q, Zhang Y W, Xu H. Journal of Neurochemistry, 2012, 120(S1): 9-21
[78] Multhaup G, Ruppert T, Schlicksupp A, Hesse L, Bill E, Pipkorn R, Masters C L, Beyreuther K. Biochemistry, 1998, 37: 7224-7230
[79] Opazo C, Barria M I, Ruiz F H, Inestrosa N C. Biometals, 2003, 16: 91-98
[80] Kong G K W, Miles L A, Crespi G A N, Morton C J, Ng H L, Barnham K J, McKinstry W J, Cappai R, Parker M W. European Biophysics Journal with Biophysics Letters, 2008, 37: 269-279
[81] White A R, Multhaup G, Maher F, Bellingham S, Camakaris J, Zheng H, Bush A I, Beyreuther K, Masters C L, Cappai R. Journal of Neuroscience, 1999, 19: 9170-9179
[82] Ciuculescu E D, Mekmouche Y, Faller P. Chemistry-A European Journal, 2005, 11: 903-909
[83] Osherovich L. Science-Business Exchange, 2009
[84] Duce J A, Tsatsanis A, Cater M A, James S A, Robb E, Wikhe K, Leong S L, Perez K, Johanssen T, Greenough M A, Cho H H, Galatis D, Moir R D, Masters C L, McLean C, Tanzi R E, Cappai R, Barnham K J, Ciccotosto G D, Rogers J T, Bush A I. Cell, 2010, 142: 857-867
[85] Wang H, Zhang Q, Cai B, Li H Y, Sze K H, Huang Z X, Wu H M, Sun H Z. FEBS Letters, 2006, 580: 795-800
[86] Chung R S, Howells C, Eaton E D, Shabala L, Zovo K, Palumaa P, Sillard R, Woodhouse A, Bennett W R, Ray S, Vickers J C, West A K. PLoS One, 2010, 5: art. no. e12030
[87] Palmiter R D, Findley S D, Whitmore T E, Durnam D M. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89: 6333-6337
[88] Garrett S H, Sens M A, Shukla D, Nestor S, Somji S, Todd J H, Sens D A. Prostate, 1999, 41: 196-202
[89] Masters B A, Quaife C J, Erickson J C, Kelly E J, Froelick G J, Zambrowicz B P, Brinster R L, Palmiter R D. Journal of Neuroscience, 1994, 14: 5844-5857
[90] Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M. Neuron, 1991, 7: 337-347
[91] Appel S H. Annals of Neurology, 1981, 10: 499-505
[92] Selkoe D J. Neuron, 1991, 6: 487-498
[93] Manso Y, Carrasco J, Comes G, Meloni G, Adlard P A, Bush A I, Vaák M, Hidalgo J. Cellular and Molecular Life Sciences, 2012, 69(21): 3683-3700
[94] Luo Y, Xu Y, Bao Q, Ding Z, Zhu C, Huang Z X, Tan X. J. Biol. Inorg. Chem., 2013, 18: 39-47
[95] Pedersen J T, Hureau C, Hemmingsen L, Heegaard N H H, Ostergaard J, Vasak M, Faller P. Biochemistry, 2012, 51: 1697-1706

[1] Dongdong Zhang, Jingmin Liu, Yaoyao Liu, Meng Dang, Guozhen Fang, Shuo Wang. The Application of Nanoparticles in Drug Delivery [J]. Progress in Chemistry, 2018, 30(12): 1908-1919.
[2] Xiaofang Wang, Yin Hu, Qifa Pan, Ruilong Yang, Zhong Long, Kezhao Liu. Crystal Structure and Electronic Structure of Uranium Nitrides [J]. Progress in Chemistry, 2018, 30(12): 1803-1818.
[3] Zhichao Yu, Chun Tang, Li Yao, Qing Gao, Zushun Xu, Tingting Yang. Preparation of Hollow Mesoporous Materials by Polymer-Based Templates [J]. Progress in Chemistry, 2018, 30(12): 1899-1907.
[4] Benzhan Zhu, Xuan Xiao, Xijuan Chao, Miao Tang, Rong Huang, Jie Shao. Investigation of the Mechanism of Cellular Uptake, Distribution and Toxicity of the DNA ‘Light-Switch’ Ru(Ⅱ) Polypyridyl Complexes [J]. Progress in Chemistry, 2018, 30(12): 1975-1991.
[5] Meiyao Tang, Yanyan Wang, He Shen, Guangbo Che. Solution-Based Preparation Techniques for Two-Dimensional Molybdenum Sulfide Nanosheet and Application of Its Composite Materials in Photocatalysis and Electrocatalysis [J]. Progress in Chemistry, 2018, 30(11): 1646-1659.
[6] Rong Yang, Lan Li, Bing Ren, Dan Chen, Liping Chen, Yinglin Yan. Doped-Graphene in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2018, 30(11): 1681-1691.
[7] Hongmei Liu*, Jianbo Jin, Jun Zhou, Kaixun Huang, Huibi Xu. The Structure and Function of Selenoprotein S and Its Relationship with Diseases [J]. Progress in Chemistry, 2018, 30(10): 1487-1495.
[8] Tengrui Shi, Yujie Yang, Qiong Liu, Nan Li*. Selenoprotein R: A Unique Methionine Sulfoxide Reductase [J]. Progress in Chemistry, 2018, 30(10): 1496-1502.
[9] Xiaoxiao Xie, Xiaoming Ma*, Xiangli Ru, Yi Chang, Yuming Guo, Lin Yang*. Biomimetic Mineralization Synthesis of Nanomaterials Under the Mediation of Cells and Potential Applications [J]. Progress in Chemistry, 2018, 30(10): 1511-1523.
[10] Kangqiang Qiu, Hongyi Zhu, Liangnian Ji, Hui Chao. Real-Time Luminescence Tracking in Living Cells with Metal Complexes [J]. Progress in Chemistry, 2018, 30(10): 1524-1533.
[11] Guang Deng, Hong Yang, Zhiguo Zhou*, Shiping Yang*. Design and Application of T1-T2 Dual-Modal MRI Contrast Agents [J]. Progress in Chemistry, 2018, 30(10): 1534-1547.
[12] Liang He, Caiping Tan, Qian Cao, Zongwan Mao. Application of Phosphorescent Cyclometalated Iridium(Ⅲ) Complexes in Cancer Treatment [J]. Progress in Chemistry, 2018, 30(10): 1548-1556.
[13] Juan Shen, Yang Zhu, Hongdong Shi, Yangzhong Liu. Multifunctional Nanodrug Delivery Systems for Platinum-Based Anticancer Drugs [J]. Progress in Chemistry, 2018, 30(10): 1557-1572.
[14] Yuewen Sun, Suxing Jin, Xiaoyong Wang, Zijian Guo. Application Prospect of Metal Complexes in Chemoimmunotherapy of Tumors [J]. Progress in Chemistry, 2018, 30(10): 1573-1583.
[15] Jun Hu, Yuzhu Yao, Yanxiao Ao, Hai Yang, Xiangliang Yang*, Huibi Xu. Inorganic Nanomaterials for Tumor Comprehensive Therapy [J]. Progress in Chemistry, 2018, 30(10): 1584-1591.