中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (06): 999-1011 DOI: 10.7536/PC120949 Previous Articles   Next Articles

• Review •

Reversible Diels-Alder Reaction

Xiong Xingquan*, Jiang Yunbing   

  1. The Key Laboratory for Functional Materials of Fujian Higher Education, College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
  • Received: Revised: Online: Published:
PDF ( 1384 ) Cited
Export

EndNote

Ris

BibTeX

Synthesis of well-defined functional molecules through highly effective reactions has been one of development tendencies of modern chemistry. Diels-Alder (D-A) reaction between furan and maleimide (MI) derivatives as an important reaction of click chemistry provides a possible synthetic method for biomedicine carriers and functional materials, which overcomes the disadvantage of using toxic heavy metal in the copper catalyzed Huisgen type (3+2) dipolar cycloaddition reaction (CuAAC). In addition, the furan/MI D-A reaction has the following advantages, such as easily availability, mild reaction condition and thermal reversibility (retro Diels-Alder, rD-A), so it has been widely used to prepare environmentally responsive materials. In this paper, the applications of furan/MI D-A reaction in preparation of responsive polymers, smart materials, biomolecules and surface modification are emphasized. Furthermore, the prospects of D-A click reaction are also discussed. Contents
1 Introduction
2 Synthesis of topological polymers via D-A reaction
2.1 Synthesis of linear polymers via D-A reaction
2.2 Synthesis of star polymers via D-A reaction
3 Synthesis of self-repairing materials via D-A reaction
4 Synthesis of smart hydrogel via D-A reaction
5 Synthesis of smart materials via D-A reaction
6 Modification of biomacromolecules via D-A reaction
7 Surface modification via D-A reaction
8 Conclusions

CLC Number: 

[1] Diels O, Alder K. Justus Liebigs Ann. Chem., 1928, 460: 98-122
[2] Moses J, Moorhouse A. Chem. Soc. Rev., 2007, 36: 1249-1262
[3] Kolb H C, Sharpless K B. Drug Discovery Today, 2003, 8: 1128-1137
[4] Tornøe C W, Christensen C, Meldal M. J. Org. Chem., 2002, 67: 3057-3064
[5] Rostovtsev V V, Green L G, Fokin V V, Sharpless K B. Angew. Chem. Int. Ed., 2002, 41: 2596-2599
[6] Morten M, Christian W T. Chem. Rev., 2008, 108: 2952-3015
[7] Wang Q, Hawker C. Chem. Asian J., 2011, 6: 2568-2569
[8] 熊兴泉 (Xiong X Q), 蔡雷 (Cai L), 唐忠科 (Tang Z K). 有机化学 (Chinese Journal of Organic Chemistry), 2012, 32: 1410-1428
[9] Wang Q, Chan T R, Hilgraf R, Fokin V V, Sharpless K B, Finn M G. J. Am. Chem. Soc., 2003, 125: 3192-3193
[10] Gierlich J, Burley G A, Gramlich P M E, Hammond D M, Carell T. Org. Lett., 2006, 8: 3639-3642
[11] Lutz J F. Angew. Chem. Int. Ed., 2008, 47: 2182-2184
[12] Qin A J, Tang L, Lam J W Y. Adv. Funct. Mater., 2009, 19: 1891-1900
[13] Lallana E, Fernandez M E, Riguera, R. J. Am. Chem. Soc., 2009, 131: 5748-5750
[14] Jim C K W, Qin A, Lam J W Y. Adv. Funct. Mater., 2010, 20: 1319-1328
[15] Tasdelen M A. Polym. Chem., 2011, 2: 2133-2145
[16] Hizal G, Tunca U, Sanyal A. J. Polym. Sci., Part A: Polym. Chem., 2011, 49: 4103-4120
[17] Taylor M T, Blackman M L, Dmitrenko O, Fox J M. J. Am. Chem. Soc., 2011, 133: 9646-9649
[18] Li Z B, Cai H C, Hassink M, Blackman M L, Brown R C D, Conti P S, Fox J M. Chem. Commun., 2010, 8043-8045
[19] Karver M R, Weissleder R, Hilderbrand S A. Bioconjugate Chem., 2011, 22: 2263-2270
[20] Inglis A J, Sinnwell S, Stenzel M H, Barner-Kowollik C. Angew. Chem. Int. Ed., 2009, 48: 2411-2414
[21] Durmaz H, Colakoclu B, Tunca U, Hizal G. J. Polym. Sci. Part A: Polym. Chem., 2006, 44: 1667-1675
[22] Gacal B, Durmaz H, Tasdelen M A, Hizal G, Tunca U, Yagci Y, Demirel A L. Macromolecules, 2006, 39: 5330-5336
[23] Xiong X Q. Aust. J. Chem., 2009, 62: 1371-1377
[24] 熊兴泉 (Xiong X Q). 有机化学 (Chinese Journal of Organic Chemistry), 2010, 30: 307-310
[25] Xiong X Q, Xu Y H. Polym. Bull., 2010, 65: 455-463
[26] Xiong X Q, Chen Y M. Eur. Polym. J., 2012, 48: 569-579
[27] Ripoll J L, Rouessac A, Rouessac F, Tetrahedron, 1978, 34: 19-40
[28] Szalai M L, McGrath D V, Wheeler D R, Zifer T, McElhanon J R. Macromolecules, 2007, 40: 818-823
[29] Robertson A, Philp D, Spencer N, Tetrahedron, 1999, 55: 11365-11384
[30] McElhanon J R, Wheeler D R. Org. Lett., 2001, 3: 2681-2683
[31] Chujo Y, Sada K, Saegusa T. Macromolecules, 1990, 23: 2636-2641
[32] Kose M M, Yesilbag G, Sanyal A. Org. Lett., 2008, 10: 2353-2356
[33] Goussé C, Gandini A, Hodge P. Macromolecules, 1998, 31: 314-421
[34] Gheneim R, Berumen C P, Gandini A. Macromolecules, 2002, 35: 7246-7253
[35] Franc G, Kakkar A K. Chem. Eur. J., 2009, 15: 5630-5639
[36] Palomo J M. Eur. J. Org. Chem., 2010, 6303-6314
[37] Sanyal A. Macromol. Chem. Phys., 2010, 211: 1417-1425
[38] Grigoras M, Sava M, Colotin G, Simionescu C I. J. Appl. Polym. Sci., 2008, 107: 846-853
[39] Gandini A, Coelho D, Gomes M, Reis B, Silvestre A. J. Mater. Chem., 2009, 19: 8656-8664
[40] Kamahori K, Tada S, Ito K, Itsuno S. Macromolecules, 1999, 32: 541-547
[41] Goussé C, Gandini A. Polym. Inter., 1999, 48: 723-731
[42] Chou C I, Liu Y L. J. Polym. Sci. Part A: Poly. Chem., 2008, 46: 6509-6517
[43] Gandini A, Silvestre A J D, Coelho D. J. Polym. Sci., Part A: Polym. Chem., 2010, 48: 2053-2056
[44] Gandini A, Silvestre A J D, Coelho D. Poly. Chem., 2011, 2: 1713-1719
[45] Vilela C, Cruciani L, Silvestre A J D, Gandini A. Macromol. Rapid. Commun., 2011, 32: 1319-1323
[46] Teramoto N, Arai Y, Shibata M. Carbohydr. Polym., 2006, 64: 78-84
[47] Teramoto N, Niwa M, Shibata M. Materials, 2010, 3: 369-385
[48] Jiang X B, Zhu W, Yan Y C, Chen Y M, Xi F. React. Funct. Polym., 2011, 71: 843-848
[49] Aumsuwan N, Urban M W. Polymer, 2009, 50: 33-36
[50] Gok O, Durmaz H, Ozdes1 E S, Hizal G, Tunca U, Sanyal A. J. Polym. Sci., Part A: Polym. Chem., 2010, 48: 2546-2556
[51] Liu Y L, Chen Y W. Macromol. Chem. Phys., 2007, 208: 224-232
[52] Tian Q, Yuan Y C, Rong M Z, Zhang M Q. J. Mater. Chem., 2009, 19: 1289-1296
[53] Peterson A M, Jensen R E, Palmese G R. ACS Appl. Mater. Interfaces, 2010, 2: 1141-1149
[54] Zhang Y C, Broekhuis A A, Picchioni F. Macromolecules, 2009, 42: 1906-1912
[55] Yoshie N, Watanabe M, Araki H, Ishida K. Polym. Degrad. Stab., 2010, 95: 826-829
[56] Park J S, Darlington T, Starr A F, Takahashi K, Riendeau J, Hahn H T. Compos. Sci. Technol., 2010, 70: 2154-2159
[57] Weizman H, Nielsen C, Weizman O S, Nemat-Nasser S. J. Chem. Educ., 2011, 88: 1137-1140
[58] Magana S, Zerroukhi A, Jegat C, Mignard N. React. Funct. Polym., 2010, 70: 442-448
[59] Imbesi P M, Fidge C, Raymond J E, Cauët S, Wooley L. ACS Macro Lett., 2012, 1: 473-477
[60] Adzima B J, Aguirre H A, Kloxin C J, Scott T F, Bowman C N. Macromolecules, 2008, 41: 9112-9117
[61] Wei H L, Yang Z, Zheng L W, Shen Y M. Polymer, 2009, 50: 2836-2840
[62] 魏宏亮 (Wei H L), 杨哲 (Yang Z), 楚晖娟 (Chu H J), 朱靖 (Zhu J), 李志成 (Li Z C). 高分子通报 (Chin. Polym. Bull. ), 2010, 5: 50-54
[63] Wei H L, Yang Z, Chen Y, Chu H J, Zhu J, Li Z C. Eur. Polym. J., 2010, 46: 1032-1039
[64] Wei H L, Yang Z, Chen Y, Chu H J, Zhu J, Li Z C, Cui J S. Polymer, 2010, 51: 1694-1702
[65] Wei H L, Yang J, Chu H J, Yang Z, Ma C C, Yao K. J. Appl. Polym. Sci., 2011, 120: 974-980
[66] Wei H L, Yao K, Yang Z, Chu H J, Zhu J, Ma C C, Zhao Z X. Macromol. Res., 2011, 19: 294-299
[67] Nimmo C M, Owen S C, Shoichet M S. Biomacromolecules, 2011, 12: 824-830
[68] Kavitha A A, Singha N K. Macromolecules, 2010, 43: 3193-3205
[69] Deze T, Riva R, Raquez J M, Dubois P, Jerome C, Alexandre M. Macromol. Rapid. Commun., 2011, 32: 1264-1269
[70] Raquez J M, Vanderstappen S, Meyer F, Verge P, Alexandre M, Thomassin J M, Jérme C, Dubois P. Chem. Eur. J., 2011, 17: 10135-10143
[71] Toncelli C, Reus D C D, Picchioni F, Broekhuis A A. Macromol. Chem. Phys., 2012, 213: 157-165
[72] Zhang J J, Niu Y, Huang C L, Xiao L P, Chen Z T, Yang K K, Wang Y Z. Polym. Chem., 2012, 3: 1390-1393
[73] Tona R, Häner R. Bioconjugate Chem., 2005, 16: 837-842
[74] Hill K W, Taunton-Rigby J, Carter J D, Kropp E, Vagle K. J. Org. Chem., 2001, 66: 5352-5358
[75] Chen Y X, Triola G, Waldmann H. Acc. Chem. Res., 2011, 44: 762-773
[76] Steven V, Graham D. Org. Biomol. Chem., 2008, 6: 3781-3787
[77] Marchan V, Ortega S, Pulido D, Pedroso E, Grandas A. Nucleic Acids Res., 2006, 34: art. no. e24
[78] Lu K, Duan Q P, Ma L, Zhao D X. Bioconjugate Chem., 2010, 21: 187-202
[79] Shi M, Wosnick J H, Ho K, Keating A, Shoichet M S. Angew. Chem. Int. Ed., 2007, 46: 6126-6131
[80] El-Sagheer A H, Cheong V V, Brown T. Org. Biomol. Chem., 2011, 9: 232-235
[81] Zhu J, Kell A J, Workentin M S. Org. Lett., 2006, 8: 4993-4996
[82] Costanzo P J, Beyer F L. Macromolecules, 2007, 40: 3996-4001
[83] Bakhtiari A B S, Hsiao D, Jin G X, Gates B D, Branda N R. Angew. Chem. Int. Ed., 2009, 48: 4166-4169

[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[3] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[4] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[5] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[6] Shiying Yang, Junqin Liu, Qianfeng Li, Yang Li. Modification Mechanism of Zero-Valent Aluminum by Mechanical Ball Milling [J]. Progress in Chemistry, 2021, 33(10): 1741-1755.
[7] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[8] Hao Sun, Chengwei Song, Yuepeng Pang, Shiyou Zheng. Functional Design of Separator for Li-S Batteries [J]. Progress in Chemistry, 2020, 32(9): 1402-1411.
[9] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.
[10] Jing Wen, Yuhong Li, Li Wang, Xiunan Chen, Qi Cao, Naipu He. Carbon Dioxide Smart Materials Based on Chitosan [J]. Progress in Chemistry, 2020, 32(4): 417-422.
[11] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[12] Huiya Wang, Limin Zhao, Fang Zhang, Dannong He. High-Performance Lithium-Ion Secondary Battery Membranes [J]. Progress in Chemistry, 2019, 31(9): 1251-1262.
[13] Zhaoxiang Wang, Jun Ma, Yurui Gao, Shuai Liu, Xin Feng, Liquan Chen. Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials [J]. Progress in Chemistry, 2019, 31(11): 1591-1614.
[14] Ping Liu, Jing Wang, Hongye Hao, Yunfan Xue, Junjie Huang, Jian Ji. Photochemical Surface Modification of Biomedical Materials [J]. Progress in Chemistry, 2019, 31(10): 1425-1439.
[15] Dongdong Zha, Bin Guo, Bengang Li, Peng Yin, Panxin Li. Chemical and Physical Mechanism of Water Resistance for Thermoplastic Starch [J]. Progress in Chemistry, 2019, 31(1): 156-166.
Viewed
Full text


Abstract

Reversible Diels-Alder Reaction