中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (05): 707-716 DOI: 10.7536/PC120935 Previous Articles   Next Articles

• Review •

Application of Polystyrene Immobilized Transition Metals as Catalysts for Hydrosilylation and Hydrogenation

Zhang Shufang, Bai Ying, Peng Jiajian, Hu Yingqian*, Lai Guoqiao*   

  1. Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 310012, China
  • Received: Revised: Online: Published:
PDF ( 1205 ) Cited
Export

EndNote

Ris

BibTeX

Polystyrene resin has been widely employed as carriers of transition metals due to its excellent physical and chemical properties. The obtained polystyrene-immobilized transition metal complexes generally exhibit high catalytic activity, enhanced reaction selectivity and good reusability, and thus have been attracting great attention for improving the efficiency of hydrosilylation and hydrogenation reactions in recent years. In addition, modifying polystyrene by coordinating-group-containing compounds could significantly enhance the coordination ability to metal ions. Consequently, the resultant catalysts usually provide better catalytic performance. In view of this, the current review summarizes the novel progress for the synthesis and application of polystyrene-immobilized transition metal complexes as catalysts in hydrosilylation and hydrogenation. The preparation method, catalytic performance and the related mechanism are introduced. Firstly, the amine-, phosphine-, mercapto groups-, and unsaturated hydrocarbon-modified polystyrene immobilized transition metals for catalytic hydrosilylation are described. Secondly, polystyrene immobilized transition metals (including Pt, Pd, Rh, Ru, Au nanoparticles, Cr, etc.) for catalytic hydrogenation are described, with the emphasis on the complexes of Pd and Rh. At last, the development trend of this kind of catalysts is suggested. Contents
1 Introduction
2 Application of polystyrene immobilized transition metals as catalysts for hydrosilylation
2.1 Polystyrene immobilized transition metal catalysts modified by amine
2.2 Polystyrene immobilized transition metal catalysts modified by phosphine
2.3 Polystyrene immobilized transition metal catalysts modified by mercapto groups
2.4 Polystyrene immobilized transition metal catalysts modified by unsaturated hydrocarbon
2.5 Others
3 Application of polystyrene immobilized transition metals as catalysts for hydrogenation
3.1 Polystyrene-Pt catalysts
3.2 Polystyrene-Pd catalysts
3.3 Polystyrene-Rh catalysts
3.4 Polystyrene-Ru catalysts
3.5 Polystyrene-Au catalysts
3.6 Polystyrene-Cr catalysts
3.7 Polystyrene-Au/Pd catalysts
4 Conclusion and outlook

CLC Number: 

[1] Capka M, Svoboda P, Cerny M. Tetrahed. Lett., 1971, 12(50): 4787-4790
[2] Capka M, Svoboda P, Kraus M. Chem. Ind., 1972, (16): 650
[3] Drake R, Dunn R, Sherrington D C, Thomson S J. Chem. Commun., 2000, (19): 1931-1932
[4] Drake R, Dunn R, Sherrington D C, Thomson S J. J. Mol. Catal. A: Chem., 2001, 177(1): 49-69
[5] Drake R, Sherrington D C, Thomson S J. J. Chem. Soc. Perkin Trans., 2002, (13): 1523-1534
[6] Drake R, Sherrington D C, Thomson S J. React. Funct. Polym., 2004, 60: 65-75
[7] 戴延凤(Dai Y F), 李磊(Li L), 李凤仪(Li F Y). 化工进展(Chemical Industry and Engineering Progress), 2006, 25(1): 74-77
[8] Cullen W R, Han N F. J. Organometal. Chem., 1987, 333(2): 269-280
[9] Dumont W, Paulin J C, Dang T P. J. Am. Chem. Soc., 1973, 95(25): 8295-8299
[10] 阚成友(Kan C Y), 袁青(Yuan Q), 杨勇(Yang Y), 孔祥正(Kong X Z). 高等学校化学学报(Chemical Journal of Chinese Universities), 1995, 16(11): 1806-1809
[11] Kan C Y, Yuan Q, Luo A G, Kong X Z. Polym. Adv. Techn., 1996, 7(2): 76-78
[12] Kan C Y, Du C M, Kong X Z. Polym. J., 2002, 34(3): 97-102
[13] 洪曼青(Hong M Q), 杜池敏(Du C M), 赵培真(Zhao P Z), 孔祥正(Kong X Z), 阚成友(Kan C Y). 有机硅材料(Silicone Material), 2000, 14(2): 10-13
[14] 阚成友(Kan C Y), 袁青(Yuan Q), 王颖(Wang Y), 贝小来(Bei X L). 有机硅材料及应用(Silicone Material & Applications), 1995, (2): 16-17
[15] 阚成友(Kan C Y), 杜池敏(Du C M), 刘德山(Liu D S). 有机硅材料(Silicone Material), 2002, 16(1): 1-4
[16] Kishi K, Ishimaru T, Ozono M, Tomita I, EdnoT. J. Polym. Sci. Part A: Polym. Chem., 2000, 38(1): 35-42
[17] Kowalewska A. J. Organometal. Chem., 2008, 693(12): 2193-2199
[18] Wawrzyńczak A, Dutkiewicz M, Guliński J, Maciejewski H, Marciniec B, Fiedorow R. Catalysis Today, 2011, 169(1): 69-74
[19] 陈远荫(Chen Y Y), 张宝莲(Zhang B L), 唐星华(Tang X H), 卢雪然(Lu X R). 离子交换与吸附(Ion Exchange and Adsorption), 1998, 14(3): 246-249
[20] 陈远荫(Chen Y Y), 孟令芝(Meng L Z), 柯爱青(Ke A Q). 催化学报(Chinese Journal of Catalysis), 1997, 18(2): 144-146
[21] 孟令芝(Meng L Z), 柯爱青(Ke A Q), 陈远荫(Chen Y Y). 应用化学(Chinese Journal of Applied Chemistry), 1997, 14(1): 107-109
[22] Török B, Kulkarni A, Sousa R D, Satuluri K, Török M, Prakash G K S. Catal. Lett., 2011, 141(10): 1435-1441
[23] Chen C W, Serizawa T, Akashi M. Chem. Mater., 1999, 11(5): 1381-1389
[24] Bhaduri S, Darshane V S, Sharmab K, Mukesh D. Chem. Commun., 1992, (23): 1738-1740
[25] Bykov A, Matveeva V, Sulman M, Valetskiy P, Tkachenko O, Kustov L, Bronstein L, Sulman E. Catalysis Today, 2009, 140(1/2): 64-69
[26] Andersson C, Larsson R. J. Am. Oil Chem. Soc., 1981, 58(6): 675-680
[27] Jo Y D, Ahn J H, Ihm S K. Korean J. Chem. Eng., 1997, 14(2): 125-128
[28] Alexander S, Udayakumar V, Gayathri V. Transition Met. Chem., 2012, 37(4): 367-372
[29] Nakao R, Rhee H, Uozumi Y. Org. lett., 2005, 7(1): 163-165
[30] 杨士勇(Yang S Y), 孙君坦(Sun J T), 李弘(Li H), 何炳林(He B L). 高分子学报(Acta Polymerica Sinica), 1989, (5): 572-578
[31] 胡卫兵(Hu W B), 周忠信(Zhou Z X), 李翔(Li X), 张曼征(Zhang M Z). 离子交换与吸附(Ion Exchange and Adsorption), 1995, 11(2): 117-121
[32] 何炳林(He B L), 王俐(Wang L). 高分子学报(Acta Polymerica Sinica), 1990, (1): 30-35
[33] 何炳林(He B L), 王俐(Wang L). 高分子学报(Acta Polymerica Sinica), 1987, (5): 404-408
[34] 潘才元(Pan C Y), 冯品珍(Feng P Z), 梁冰玉(Liang B Y). 催化学报(Chinese Journal of Catalysis), 1981, 2(2): 152-155
[35] 茅素芬(Mao S F), 陈宗翰(Chen Z H), 江英彦(Jiang Y Y). 西安交通大学学报(Journal of Xi’an Jiaotong University), 1989, 23(2): 113-120
[36] 张一平(Zhang Y P), 徐筠(Xu J), 廖世健(Liao S J), 袁华先(Yuan H X), 李悟崇(Li W C). 分子催化(Journal of Molecular Catalysis), 1991, 5(4): 362-366
[37] Sulman E, Bodrova Y, Matveeva V, Semagina N, Cerveny L, Kurtc V, Bronstein L, Platonova O, Valetsky P. Appl. Catal. A: General, 1999, 176(1): 75-81
[38] Bombi G, Lora S, Zancato M, D’Archivio A A, Jerabek K, Corain B. J. Mol. Catal. A: Chem., 2003, 194(1/2): 273-281
[39] Semikolenov V A, Likholobov V A, Valentini G, Braca G, Ciardelli F. React. Kinet. Catal. Lett., 1980, 15(3): 383-388
[40] Heldal J A, Moulton K J, Frankel E N. J. Am. Oil Chem. Soc., 1989, 66(7): 979-982
[41] Kaneda K, Terasawa M, Imanaka T, Teranishi S. Chem. Lett., 1976, 5(9): 995-998
[42] Kaneda K, Mizugaki T. Organometallics, 1996, 15(15): 3247-3249
[43] Krause H W. React. Kinet. Catal. Lett., 1979, 10(3): 243-246
[44] Parameswaran V R, Vancheesan S. React. Kinet. Catal. Lett., 1991, 44(1): 185-190
[45] Parameswaran V R, Vancheesan S. React. Kinet. Catal. Lett., 1991, 45(1): 55-60
[46] Parameswaran V R, Vancheesan S. Proc. Indian Acad. Sci. (Chem. Sci. ), 1991, 103(2): 99-106
[47] Bhaduri S, Lahiri G K, Munshi P. J. Organometal. Chem., 2000, 606(2): 151-155
[48] Nunes R M D, Fernandes T F, Carvalho G A, Santos E N, Moreno M J S M, Piedade A P, Pereira M M. J. Mol. Catal. A: Chem., 2009, 307(1/2): 115-120
[49] Norma A C, Gerardo A, Miguel P H, Ratnasamy S. Tetrahed. Lett., 2009, 50(19): 2228-2231
[50] Fish R H, Thormondsen A D, Heinemann H. J. Mol. Catal., 1985, 31(2): 191-198
[51] Itsuno S, Tsuji A, Takahashi M. Tetrahed. Lett., 2003, 44(19): 3825-3828
[52] Islam S M, Tuhina K, Mubarak M, Mondal P. J. Mol. Catal. A: Chem., 2009, 297(1): 18-25
[53] Arakawa Y, Haraguchi N, Itsuno S. Tetrahed. Lett., 2006, 47(19): 3239-3243
[54] Takahashi Y, Yukita W, Chatterjee M, Suzuki T M. React. Funct. Polym., 2008, 68(10): 1476-1482
[55] Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh S K, Pal T. J. Phys. Chem. C, 2007, 111(12): 4596-4605
[56] Pittman C U J, Kim B T, Douglas W M. J. Org. Chem., 1975, 40(5): 590-593
[57] Seregina M V, Bronstein L M, Platonova O A, Chernyshov D M, Valetsky P M. Chem. Mater., 1997. 9(4): 923-931

[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[4] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[5] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[6] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[7] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[8] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[9] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[10] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[11] Yiqiang Liu, Yimei Qiu, Xing Tang, Yong Sun, Xianhai Zeng, Lu Lin. Glucose Isomerization into Fructose by Chemocatalytic Route [J]. Progress in Chemistry, 2021, 33(11): 2128-2137.
[12] Andong Hu, Shungui Zhou, Jie Ye. The Mechanism, Progress and Prospect of Biohybrid Mediated Semi-Artificial Photosynthesis [J]. Progress in Chemistry, 2021, 33(11): 2103-2115.
[13] Mengting Xu, Yanqing Wang, Ya Mao, Jingjuan Li, Zhidong Jiang, Xianxia Yuan. Cathode Catalysts for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2021, 33(10): 1679-1692.
[14] Xin Lin, Fanfu Guan, Jialin Wen, Pan-Lin Shao, Xumu Zhang. Synthesis of Chiral Tridentate Ligands with a Ferrocene Framework and Their Applications in Ir-Catalyzed Asymmetric Hydrogenation [J]. Progress in Chemistry, 2020, 32(11): 1680-1696.
[15] Huina Zou, Shoufei Zhu. Progresses of 1,10-Phenanthroline Type Ligands in Fe/Co/Ni Catalysis [J]. Progress in Chemistry, 2020, 32(11): 1766-1803.