中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (05): 821-831 DOI: 10.7536/PC120860 Previous Articles   Next Articles

• Review •

Application of Synchrotron FTIR Microspectroscopy and Mapping in Analytical Chemistry

Ling Shengjie1, Huang Yufang*2, Huang Lei1, Shao Zhengzhong1, Chen Xin*1   

  1. 1. State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China;
    2. Department of Materials Science, National Microanalysis Center, Fudan University, Shanghai 200433, China
  • Received: Revised: Online: Published:
PDF ( 1624 ) Cited
Export

EndNote

Ris

BibTeX

Synchrotron radiation based Fourier-transform infrared (S-FTIR) microspectroscopy is a new-developed technique, which combines the advantages of FTIR spectroscopy and synchrotron light source. FTIR spectroscopy is an easy, fast, and well-established analytical method to be wildly used in many fields, especially has the ability to characterize different samples (for instance, organic and inorganic materials, or crystalline and amorphous materials) in the same time. On the other hand, the ultra brightness and high spatial resolution of synchrotron light source ensure S-FTIR microspectroscopy is capable of analyzing small samples or small sample areas that conventional FTIR cannot do. After 20 years of development, S-FTIR has been widely used in a variety of analytical chemistry field and obtained an abundant research results. In our previous review, we discussed the application of S-FTIR microspectroscopy in biomedical field, so here we review recent applications of S-FTIR microspectroscopy in some other analytical chemistry areas, including cultural heritage and archaeology, earth and space science, and chemistry and polymer science. It is no doubt that S-FTIR microspectroscopy has become a more and more useful tool to determine the structure of small samples or small sample areas. In the future, a multibeam synchrotron imaging system, which combine a multibeam synchrotron source with focal plane array (FPA) detectors, with a greatly improved spatial resolution by reducing the diffraction limited spot size an order of magnitude to 0.54 μm × 0.54 μm, may further show the merit of S-FTIR technique on the characterization of small samples or small sample areas in various research fields. Contents
1 Introduction
2 Synchrotron infrared light source
3 Applications in the cultural heritage and archeology field
4 Applications in the earth and space science field
5 Applications in the chemistry and polymer science field
6 Outlook

CLC Number: 

[1] Schweizer E, Nagel J, Braun W, Lippert E, Bradshaw A M. Nucl. Instrum. Meth. A, 1985, 239: 630-634
[2] Dumas P, Miller L M, Tobin M J. Acta Phys. Pol. A, 2009, 115: 446-454
[3] Carr G L, Reffner J A, Williams G P. Rev. Sci. Instrum., 1995, 66: 1490-1492
[4] Carr G L, Hanfland M, Williams G P. Rev. Sci. Instrum., 1995, 66: 1643-1645
[5] Reffner J A, Martoglio P A, Williams G P. Rev. Sci. Instrum., 1995, 66: 1298-1302
[6] Martin M C, Schade U, Lerch P, Dumas P. Trac-Trend Anal. Chem., 2010, 29: 453-463
[7] 严佳萍(Yan J P), 邵正中(Shao Z Z), 陈新(Chen X), 黄郁芳(Huang Y F). 化学进展(Progress in Chemisty), 2008, 20(11): 1768-1778
[8] 贾启卡(Jia Q K). 强激光与粒子束(High Power Laser and Particle Beams), 2003, 15(6): 2-5
[9] Bertrand L, Robinet L, Thoury M, Janssens K, Cohen S X, Schoder S. Appl. Phys. A-Mater., 2012, 106: 377-396
[10] Cotte M, Dumas P, Taniguchi Y, Checroun E, Walter P, Susini J. C. R. Phys., 2009, 10: 590-600
[11] Perez-Alonso M, Castro K, Madariaga J M. Curr. Anal. Chem., 2006, 2: 89-100
[12] Font J, Alvado N S, Buti S, Enrich J. Anal. Chim. Act., 2007, 598: 119-127
[13] Bartoll J, Hahn O, Schade U. Stud. Conserv., 2008, 53: 1-8
[14] De Ryck I, Adriaens A, Pantos E, Adams F. Analyst, 2003, 128: 1104-1109
[15] Cotte M, Susini J, Sole V A, Taniguchi Y, Chillida J, Checroun E, Walter P. J. Anal. At. Spectrom., 2008, 23: 820-828
[16] Salvado N, Buti S, Nicholson J, Emerich H, Labrador A, Pradell T. Talanta, 2009, 79: 419-428
[17] Lluveras A, Boularand S, Andreotti A, Vendrell-Saz M. Appl. Phys. A-Mater., 2010, 99: 363-375
[18] Cotte M, Checroun E, Susini J, Walter P. Appl. Phys. a-Mater., 2007, 89: 841-848
[19] Cotte M, Dumas P, Richard G, Breniaux R, Walter P. Anal. Chim. Acta, 2005, 553: 105-110
[20] Mazel V, Richardin P, Debois D, Touboul D, Cotte M, Brunelle A, Walter P, Laprevote O. Anal. Chem., 2007, 79: 9253-9260
[21] Echard J P, Cotte M, Dooryhee E, Bertrand L. Appl. Phys. a-Mater., 2008, 92: 77-81
[22] Bertrand L, Robinet L, Cohen S X, Sandt C, Le Ho A S, Soulier B, Lattuati-Derieux A, Echard J P. Anal. Bioanal. Chem., 2011, 399: 3025-3032
[23] Reiche I, Lebon M, Chadefaux C, Muller K, Le Ho A S, Gensch M, Schade U. Anal. Bioanal. Chem., 2010, 397: 2491-2499
[24] Lebon M, Muller K, Bahain J J, Frohlich F, Falgueres C, Bertrand L, Sandt C, Reiche I. J. Anal. At. Spectrom., 2011, 26: 922-929
[25] Smith G D. J. Am. Inst. Conserv., 2003, 42: 399-406
[26] Salvado N, Buti S, Tobin M J, Pantos E, Prag A, Pradell T. Anal. Chem., 2005, 77: 3444-3451
[27] Sloggett R, Kyi C, Tse N, Tobin M J, Puskar L, Best S P. Vib. Spectrosc., 2010, 53: 77-82
[28] Vagnini M, Miliani C, Cartechini L, Rocchi P, Brunetti B G, Sgamellotti A. Anal. Bioanal. Chem., 2009, 395: 2107-2118
[29] Richardson E, Martin G, Wyeth P, Zhang X. Microchim. Acta, 2008, 162: 303-312
[30] Kendix E L, Prati S, Joseph E, Sciutto G, Mazzeo R. Anal. Bioanal. Chem., 2009, 394: 1023-1032
[31] Fukunaga K, Hosako I. C. R. Phys., 2010, 11: 519-526
[32] Della Ventura G, Bellatreccia F, Marcelli A, Guidi M C, Piccinini M, Cavallo A, Piochi M. Anal. Bioanal. Chem., 2010, 397: 2039-2049
[33] 郭立鹤(Guo L H). 矿物岩石地球化学通报(Bulletin of Mineralogy, Petrology and Geochemistry), 1995, 61-63
[34] 杨晓志(Yang X Z), 夏群科(Xia Q K), 杨燕(Yang Y), 李佩(Li P), 黄玉(Huang Y). 中国科学技术大学学报(Journal of University of Science and Technology of China), 2007, 37(8): 964-973
[35] 杨燕(Yang Y), 夏群科(Xia Q K), 冯敏(Feng M). 岩石学报(Acta Petrologica Sinica), 2011, 27(2): 566-578
[36] Grant K, Ingrin J, Lorand J P, Dumas P. Contrib. Mineral. Petrol., 2007, 154: 15-34
[37] Sommer H, Regenauer-Lieb K, Gasharova B, Siret D. Mineral. Petrol., 2008, 94: 1-8
[38] 施倪承(Shi N C), 李国武(Li G W), 马喆生(Ma J S), 熊明(Xiong M). 自然杂志(Chinese Journal of Nature), 2011, 33: 101-105
[39] Chamorro-Pérez E M, Daniel I, Chervin J C, Dumas P, Bass J D, Inoue T. Phys. Chem. Miner., 2006, 33: 502-510
[40] Sandford S A, Walker R M. Ap. J., 1985, 291: 838-851
[41] Flynn G J, Keller L P, Feser M, Wirick S, Jacobsen C. Geochim. Cosmochim. Acta, 2003, 67: 4791-4806
[42] Flynn G J, Keller L P, Jacobsen C, Wirick S. Advance in Space Research. Elsevier, 2004. 57-66
[43] Matrajt G, Caro G M M, Dartois E, Hendecourt L, Deboffle D, Borg J. Astron. Astrophys., 2005, 433: 979-995
[44] Matrajt G, Borg J, Raynal P I, Djouadi Z, d'Hendecourt L, Flynn G, Deboffle D. Astron. Astrophys., 2004, 416: 983-990
[45] Keller L P, Hony S, Bradley J P, Molster F J, Waters L, Bouwman J, de Koter A, Brownlee D E, Flynn G J, Henning T, Mutschke H. Nature, 2002, 417: 148-150
[46] Moroz L V, Schmidt M, Schade U, Hiroi T, Ivanova M A. Meteorit. Planet. Sci., 2006, 41: 1219-1230
[47] Quirico E, Raynal P I, Bourot-Denise M. Meteorit. Planet. Sci., 2003, 38: 795-811
[48] Sandford S A, Aleon J, Alexander C M O, Araki T, Bajt S, Baratta G A, Baratta G A, Borg J, Bradley, J P Brownlee D E, Brucato J R, Burchell M J, Busemann H, Butterworth A, Clemett S J, Cody G, Colangeli L, Cooper G, D'Hendecourt L, Djouadi Z, Dworkin J P, Ferrini G, Fleckenstein H, Flynn G J, Franchi I A, Fries M, Gilles M K, Glavin D P, Gounelle M, Grossemy F, Jacobsen C, Keller L P, Kilcoyne A L D, Leitner J, Matrajt G, Meibom A, Mennella V, Mostefaoui S, Nittler L R, Palumbo M E, Papanastassiou D A, Robert F, Rotundi A, Snead C J, Spencer M K, Stadermann F J, Steele A, Stephan T, Tsou P, Tyliszczak T, Westphal A J, Wirick S, Wopenka B, Yabuta H, Zare R N, Zolensky M E. Science, 2006, 314: 1720-1724
[49] Spencer M K, Zare R N. Science, 2007, 317: 1680c. DOI: 10. 1126/science. 1142407
[50] Sandford S A, Brownlee D E. Science, 2007;317: 1680d. DOI: 10. 1126/science. 1145013
[51] Zhang X, Ross P N, Kostecki R, Kong F, Sloop S, Kerr J B, Striebel K, Cairns E J, McLarnon F. J. Electrochem. Soc., 2001, 148: A463-A470
[52] Kox M H F, Domke K F, Day J P R, Rago G, Stavitski E, Bonn M, Weckhuysen B M. Angew. Chem. Int. Edit., 2009, 48: 8990-8994
[53] Stavitski E, Kox M H F, Swart I, de Groot F M F, Weckhuysen B M. Angew. Chem. Int. Edit., 2008, 3543-3547
[54] Canete S J P, Zhang Z Z, Kong L M, Schlegel V L, Plantz B A, Dowben P A, Lai R Y. Chem. Commun., 2011, 47: 11918-11920
[55] Beattie D A, Beaussart A, Mierczynska-Vasilev A, Harmer S L, Thierry B, Puskar L, Tobin M. Langmuir, 2012, 28: 1683-1688
[56] Weckhuysen B M. Angew. Chem. Int. Edit., 2009; 48: 4910-4943
[57] Beale A M, Jacques S D M, Weckhuysen B M. Chem. Soc. Rev., 2010, 39: 4656-4672
[58] Stavitski E, Weckhuysen B M. Chem. Soc. Rev., 2010, 39: 4615-4625
[59] Serrano F, Lopez G L, Jadraque M, Koper M, Ellis G, Cano P, Martin M, Garrido L. Biomaterials, 2007, 28: 650-660
[60] Ellis G, Marco C, Gomez M. Infrared Phys. Techn., 2004, 45: 349-364
[61] Vechambre C, Buleon A, Chaunier L, Jamme F, Lourdin D. Macromolecules, 2010, 43: 9854-9858
[62] De Giacomo O, Cesaro A, Quaroni L. Food Biophys., 2008, 3: 77-86
[63] Chen X, Li W J, Yu T Y. J. Polym. Sci. Pol. Phys., 1997, 35: 2293-2296
[64] Chen X, Knight D P, Shao Z Z, Vollrath F. Polymer, 2001, 42: 9969-9974
[65] Chen X, Shao Z Z, Marinkovic N S, Miller L M, Zhou P, Chance M R. Biophys. Chem., 2001, 89: 25-34
[66] Chen X, Knight D P, Shao Z Z, Vollrath F. Biochemistry, 2002, 41: 14944-14950
[67] 陈新(Chen X), 邵正中(Shao Z Z), Knight D P, Vollrath F. 化学学报(Acta Chimica Sinica), 2002, 60(12): 2203-2208
[68] 陈新(Chen X), 周丽(Zhou L), 邵正中(Shao Z Z), 周平(Zhou P), Knight D P, Vollrath F. 化学学报(Acta Chimica Sinica), 2003, 61(4): 625-629
[69] Chen X, Shao Z Z, Knight D P, Vollrath F. Proteins, 2007, 68: 223-231
[70] Chen X, Knight D P, Shao Z Z. Soft Matter, 2009, 5: 2777-2781
[71] Ling S J, Zhou L, Zhou W, Shao Z Z, Chen X. Mater. Lett., 2012, 81: 13-15
[72] Chen X, Cai H F, Ling S J, Shao Z Z, Huang Y F. Appl. Spectrosc., 2012, 66: 696-699
[73] Ling S J, Qi Z M, Knight D P, Shao Z Z, Chen X. Biomacromolecules, 2011, 12: 3344-3349
[74] Zhou G Q, Shao Z Z, Knight D P, Yan J P, Chen X. Adv. Mater., 2009, 21: 366-370
[75] Yan J P, Zhou G Q, Knight D P, Shao Z Z, Chen X. Biomacromolecules, 2010, 11: 1-5
[76] Nasse M J, Walsh M J, Mattson E C, Reininger R, Kajdacsy-Balla A, Macias V, Bharga R, Hirschmugl C J. Nat. Methods, 2011, 8: 413-416
[77] Kwak J T, Reddy R, Sinha S, Bhargava R. Anal. Chem., 2012, 84: 1063-1069
[78] Kastyak-Ibrahim M Z, Nasse M J, Rak M, Hirschmugl C, Del Bigio M R, Albensi B C, Gough K M. Neuroimage, 2012, 60: 376-383
[79] Hirschmugl C J, Gough K M. Appl. Spectrosc., 2012, 66: 475-491
[80] Chen L, Holman H Y N, Hao Z, Bechtel H A, Martin M C, Wu C, Chu S. Anal. Chem., 2012, 84: 4118-4125
[81] Caine S, Heraud P, Tobin M J, McNaughton D, Bernard C C A. Neuroimage, 2012, 59: 3624-3640
[82] Quaroni L, Zlateva T, Normand E. Anal. Chem., 2011, 83: 7371-7380
[83] Quaroni L, Zlateva T. Analyst, 2011, 136: 3219-3232
[84] Martin F L. Nat. Methods, 2011, 8: 385-387
[85] Gazi E, Lockyer N P, Vickerman J C, Gardner P, Dwyer J, Hart C A, Brown M D, Clarke N W, Miyan J. Appl. Surf. Sci., 2004, 231: 452-456
[86] Cheng X R, Qi Z M, Zhang G B, Chen Y H, Li T T, Pan G Q, Yin M. Appl. Surf. Sci., 2009, 256: 838-841
[87] Wang X, Chen X L, Qi Z M, Liu X C, Li W Z, Wang S Y. Spectrochim. Acta A, 2012, 91: 285-289
[88] 王欣(Wang X), 陈先良(Chen X L), 戚泽明(Qi Z M), 刘省存(Liu X C), 刘刚(Liu G), 黄大可(Huang D K), 田扬超(Tian Y C). 化学学报(Acta Chimica Sinica), 2011, 69(12): 1491-1495
[89] Wang X, Qi Z M, Liu X C, Wang S, Li C X, Liu G, Xing Y, Li T T, Tao J Q, Tian Y C. Cancer Epidemiol., 2010, 34: 453-456
[90] Wang X, Qi Z M, Wang S Y, Liu G, Gao H L, Tian Y C. Spectrochim. Acta A, 2011, 79: 1660-1662

[1] Li Fu, Huaiwei Zhang, Weiting Ye, Chen Ye, Cheng-Te Lin. Solid-State Electroanalytical Chemistry and Its Application in Plant Analysis [J]. Progress in Chemistry, 2021, 33(8): 1440-1449.
[2] Ling Shengjie, Shao Zhengzhong, Chen Xin. Application of Synchrotron FTIR Imaging for Cells [J]. Progress in Chemistry, 2014, 26(01): 178-192.
[3] Yang Tongzai, Wang Xiaolin. Current Status and Prospect of Radioanalytical Chemistry in the National Defense [J]. Progress in Chemistry, 2011, 23(7): 1520-1526.
[4] Yu Qiongwei, Feng Yuqi. Application of Liquid-Phase Deposition in Analytical Chemistry [J]. Progress in Chemistry, 2011, 23(6): 1211-1223.
[5]

Li Ruiping, Zhang Yi, Huang Yingping

. Determination of Tetracycline Antibiotics in the Environmental Samples [J]. Progress in Chemistry, 2008, 20(12): 2075-2082.
[6] Wang Nan,Xu Shukun*|Wang Wenxing. Nano-gold Bio-probe and Its Applications [J]. Progress in Chemistry, 2007, 19(0203): 408-413.
[7] Wen Zhen1,Dang Zhi3,Yu Deshun2,1,Shang Aian1. Research Progress of Supercritical Carbon Dioxide Fluid Extraction of Heavy Metals [J]. Progress in Chemistry, 2001, 13(04): 310-.
[8] Kong Jilie. Applications and Prospects for Advanced Electroanalytical Techniques in Ch inese Medicine Analysis [J]. Progress in Chemistry, 1999, 11(03): 300-.
[9]

Ni Zheming, Long Yaoting, Lu Zongpeng

. Recent Advances in Analytical Chemistry [J]. Progress in Chemistry, 1995, 7(01): 60-.