中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (06): 927-939 DOI: 10.7536/PC120854 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

MV3O8(M=Li+, Na+, NH4+) as Novel Intercalated Materials for Li-Ion Batteries

Wang Haiyan*, Tang Yougen, Zhou Donghui, Liu Suqin, Zhang Hui   

  1. Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083
  • Received: Revised: Online: Published:
PDF ( 1389 ) Cited
Export

EndNote

Ris

BibTeX

Research progress of MV3O8 (M=Li+, Na+, NH4+) as lithium intercalated materials for lithium ion batteries in recent years are reviewed,especially with emphasis on their crystal structures, charge-discharge mechanisms, synthesis methods and electrochemical properties. The advantage and disadvantage of the involved three kinds of vanadium-related materials are well compared on the basis of our group's research. Till now, LiV3O8 has been widely studied and large progress has been made via employing the novel preparation strategies, effective doping or modification methods. However, the intrinsic inferior structure has become a big challenge for its further study and applications. Due to the relatively stable layered structure, NaV3O8 has good cycling stability and excellent rate capability, thus it exhibits a great potential to be used as a high-power and long-cycling life cathode material for non-aqueous lithium ion battery, as well as high performance anode material for aqueous lithium ion battery. In comparison with LiV3O8, NH4V3O8 shows comparable capacity, much easier preparation and better cycling stability probably due to its formation of intra molecular H-bond. It is believed that NH4V3O8 could become a new research topic in vanadates as intercalated materials for lithium ion batteries. Contents
1 Introduction
2 LiV3O8
2.1 Crystal structure
2.2 Charge-discharge mechanism of LiV3O8 used as cathode material for Li-ion battery
2.3 Synthesis methods
2.4 Effect factors of electrochemical performance
2.5 Modification studies
2.6 LiV3O8 as anode material for aqueous Li-ion battery
3 NaV3O8
3.1 Crystal structure
3.2 Charge-discharge mechanism of NaV3O8 used as cathode material for Li-ion battery
3.3 Synthesis and electrochemical performance
4 NH4V3O8
4.1 Crystal structure
4.2 Charge-discharge mechanism of NH4V3O8 used as cathode material for Li-ion battery
4.3 Synthesis and electrochemical performance
5 Conclusions and outlook

CLC Number: 

[1] Tarascon J M, Armand M. Nature, 2001, 414: 359-367
[2] Megahed S, Scrosati B. J. Power Sources, 1994, 51: 79-104
[3] Shlyakhtin O A, Yoon Y S, Choi S H, Oh Y J. Electrochimica Acta, 2004, 50: 505-509
[4] 唐爱东 (Tang A D), 王海燕(Wang H Y), 黄可龙(Huang K L), 谭斌 (Tan B), 王晓玲(Wang X L). 化学进展(Progress in Chemistry), 2007, 19: 1313-1321
[5] Leising R A, Palazzo M, Takeuchi J E S, Kenneth J T. J. Electrochem. Soc., 2001, 148: A838-A844
[6] Wang H Y, Tang A D, Huang K L. Chin. J. Chem., 2011, 29: 27-32
[7] Wang H Y, Tang A D, Huang K L. Chin. J. Chem., 2011, 29: 1583-1588
[8] Owen J R. Chem. Soc. Rev., 1997, 26: 259-267
[9] 王海燕(Wang H Y), 黄可龙(Huang K L), 刘素琴(Liu S Q), 罗燕(Luo Y). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2009, 25(12): 2090-2096
[10] Li H, Wang Z X, Chen L Q, Huang X J. Adv. Mater., 2009, 21: 4593-4607
[11] Wadsley A D. Acta Cryst., 1957, 10: 261-267
[12] Besenhard J O, Schöllhom R. J. Power Sources, 1977, 1(3): 267-276
[13] Ma H, Yuan Z Q, Cheng F Y. J. Alloy. Compd., 2011, 509: 6030-6035
[14] Yang H, Li J, Zhang X G, Jin Y L. J. Mater. Process. Technol., 2008, 207: 265-270
[15] Liu H M, Wang Y G, Wang K X, Wang Y R, Zhou H S. J. Power Sources, 2009, 192: 668-673
[16] Pan A Q, Zhang J G, Cao G Z, Liang S Q, Wang C M, Nie Z, Bruce W A, Xu W, Liu D, Xiao J, Li G S, Liu J. J. Mater. Chem., 2011, 21: 10077-10084
[17] Rozier P, Morcrette M, Martin P, Laffont L, Tarascon J M. Chem. Mater., 2005, 17 (5): 984-991
[18] Picciotto L A, Adendorff K T, Liles D C, Thackeray M M. Solid State Ionics, 1993, 62: 297-307
[19] Pistoia G, Panero S, Tocci M, Moshtev R V, Maner V. Solid State Ionics, 1984, 13: 311-318
[20] Pistoia G, Pasquali M, Tocci M, Moshtev R V, Maner V. J. Electrochem. Soc., 1985, 132: 281-284
[21] Kawakita J, Katayama Y, Miura T, Kishi T. Solid State Ionics, 1998, 107: 145-152
[22] Tossici R, Marassi R, Berrettoni M, Stizza S, Pistoia G. Solid State Ionics, 1992, 57: 227-234
[23] Wang G, Roos J, Brinkmann D, Pasquali M, Pistoia G. J. Phys. Chem. Solids, 1993, 54: 851-855
[24] Bonino F, Panero S, Pasquali M, Pistoia G. J. Power Sources, 1995, 56: 193-196
[25] Raistrick I D. Rev. Chim. Miner., 1984, 21: 456-461
[26] Kawakita J, Miura T, Kishi T. Solid State Ionics, 1999, 120: 109-116
[27] Kawakita J, Majima M, Miura T, Kishi T. J. Power Sources, 1997, 66: 135-139
[28] Kawakita J, Miura T, Kishi T. Solid State Ionics, 1999, 118: 141-147
[29] Kawakita J, Kato T, Katayama Y, Miura T, Kishi T. J. Power Sources, 1999, 81/82: 448-453
[30] Kawakita J, Katayama Y S, Miura T, Kishi T. Solid State Ionics, 1998, 110: 199-207
[31] 刘进(Liu J), 张泽志(Zhang Z Z), 兰尧中(Lan Y Z). 电源技术(Chin. J. Power Sources), 2006, 130: 552-554
[32] Liu Y M, Zhou X C, Guo Y L. Mater. Chem. Phys., 2009, 114: 915-919
[33] Yu A S, Kumagai N K, Liu Z L, Lee J Y. J. Power Sources, 1998, 74: 117-121
[34] Liu L, Jiao L F, Zhang Y H, Sun J L, Yang L, Miao Y L, Yuan H T, Wang Y M. Mater. Chem. Phys., 2008, 111: 565-569
[35] Zhou Y, Yue H F, Zhang X Y, Deng X Y. Solid State Ionics, 2008, 179: 1763-1767
[36] 李志友(Li Z Y), 黄伯云(Huang B Y), 汤春峰(Tan C F), 刘志坚(Liu Z J), 曲选辉(Qu X H). 功能材料(J. Funct. Mater.), 2001, 32: 181-183
[37] Yang G, Wang G, Hou W H. J. Phys. Chem. B, 2005, 109: 11186-11196
[38] Murugan A V, Muraliganth T, Manthiram T. J. Phys. Chem. C, 2008, 112 (37): 14665-14671
[39] Ju S H, Kang Y C. Electrochimica Acta, 2010, 55: 6088-6092
[40] West K, Skaarup S, Saidi Y. J. Electrochem. Soc., 143(3): 820-825
[41] Feng Y, Hou F, Li Y L. J. Power Sources, 2009, 192: 708-713
[42] Pan A Q, Liu J, Zhang J G, Cao G Z, Xu W, Nie Z, Jie X, Choi D, Bruce W A, Wang C, Liang S Q. J. Mater. Chem., 2011, 21: 1153-1161
[43] Xu H Y, Wang H, Song Z Q, Wang Y W, Yan H, Yoshimura M. Electrochim. Acta, 2004, 49: 349-353
[44] 杨辉(Yang H), 李娟(Li J). 应用化学(Chin. J. Appl. Chem.), 2009, 26(8): 989-992
[45] Liu H, Yang H, Huang T. Materials Science and Engineering B, 2007, 143: 60-63
[46] Wang H Y, Ren Y, Wang Y, Wang W J, Liu S Q. CrystEngComm, 2012, 14(8): 2831-2836
[47] Si Y C, Jiao L F, Yuan H T, Li H X, Wang Y M. J. Alloy. Compd., 2009, 486: 400-405
[48] Li H H, Yadegari H, Jabbari A. Mater. Chem. Phys., 2011, 126: 476-479
[49] Liu Q Y, Liu H W, Zhou X W, Cong C J, Zhang K L. Solid State Ionics, 2005, 176: 1549-1554
[50] Sun J L, Peng W X, Song D W, Wang Q H, Du L F, Jiao H M, Si Y C, Yuan H T. Mater. Chem. Phys., 2010, 124: 248-251
[51] Pasquali M, Pistoia G, Manev V, Moshtev V. J. Electrochem. Soc., 1986, 133: 2454-2458
[52] Liu L, Jiao L F, Sun J L, Zhang Y H, Zhao M, Yuan H T, Wang Y M. J. Alloy. Compd., 2009, 471(1/2): 352-356
[53] Xu J Q, Zhang H L, Zhang T, Pan Q Y, Gui Y H. J. Alloy. Compd., 2009, 467: 327 -331
[54] Kovalehuk E P, Reshetnyak O V, Kovalyshynya S, Bla ejowski J. J. Power Sources, 2002, 107: 61-66
[55] Gill B C, Shaekle D R, Andersen T N. J. Electrochem. Soc., 2000, 147(10): 3575 -3578
[56] Liu Y M, Zhou X C, Guo Y L. J. Power Sources, 2008, 184: 303-307
[57] 马胜林(Ma S L), 赵新兵(Zhao X B), 谢健(Xie J), 陈学军(Chen X J), 曹高劭(Cao G S), 朱铁军(Zhu T J). 电源技术(Chin. J. Power Sources), 2007, 131: 598-600
[58] Kumagai N, Yu A S. J. Electrochem. Soc., 1997, 144(3): 830-835
[59] Liu J, Liu W, Wan Y L, Ji S M, Wang J B, Zhou Y C. RSC Adv., 2012, 2: 10470-10474
[60] Manev V, Momchilov A, Nassalevska A. J. Power Sources, 1995, 54: 501-507
[61] Jouanneau S, La Salle A L, Verbaere A, Guyomard D. J. Electrochem. Soc., 2005, 152 (8): A1660-A1667
[62] Feng Y, Li Y L, Hou F. J. Power Sources, 2009, 187: 224-228
[63] Kumagai N, Yu A, West K. J. Appl. Electrochem., 1997, 27: 953 -958
[64] Pistoia G, Wang G, Zane D. Solid State Ionics, 1995, 76: 285-290
[65] Jouanneau S, La Salle A L, Verbaere A, Guyomard D, Lascaud S. J. New Mater. Electrochem. Syst., 2002, 5: 191-196
[66] Sun J L, Jiao L F, Yuan H T, Liu L, Wei X, Miao Y L, Yang L, Wang Y M. J. Alloy. Compd., 2009, 472: 363-366
[67] 司玉昌(Si Y C), 焦丽芳(Jiao L F), 李海霞(Li H X), 袁华堂(Yuan H T). 南开大学学报(自然科学版)(Acta Scientiarum Naturalium Universitatis Nakaiensis), 2008, 41: 70-73
[68] Jiao L F, Li H X, Yuan H T, Wang Y M. Mater. Lett., 2008, 62: 3937-3939
[69] Liu L, Jiao L F, Sun J L, Zhao M, Zhang Y H, Yuan H T, Wang Y M. Solid State Ionics, 2008, 178: 1756-1761
[70] Zhao M, Jiao L F, Yuan H T, Feng Y, Zhang M. Solid State Ionics, 2007, 178: 387-391
[71] Liu L, Jiao L F, Sun J L, Zhang Y H, Zhao M, Yuan H T, Wang Y M. Electrochimica Acta, 2008, 53: 7321-7325
[72] 吴俊莉(Wu J L), 童庆松(Tong Q S), 刘永梅(Liu Y H), 徐伟(Xu W). 云南大学学报(自然科学版)(Journal of Yunnan University (Natural Science)), 2006, 28 (6): 530-532
[73] Feng C Q, Huang L F, Guo Z P. J. Power Sources, 2007, 174: 548-551
[74] Wang H B, Zeng Y Q, Huang K L, Liu S Q, Chen L Q. Electrochimica Acta, 2007, 52: 5103 -5107
[75] Feng C Q, Chew S Y, Guo Z P, Wang J Z, Liu H K. J. Power Sources, 2007, 174: 1095-1099
[76] Jiao L F, Liu L, Sun J L, Zhang Y H, Yuan H T, Wang Y M, Zhou X D. J. Phys. Chem. C, 2008, 112: 18249-18254
[77] Idris N H, Rahman M M, Wang J Z, Chen Z X, Liu H K. Compos. Sci. Technol., 2011, 71: 343-349
[78] 王海波(Wang H B). 中南大学博士学位论文(Doctoral Dissertation of Central South University), 2008
[79] Köhler J, Makihara H, Uegaito H, Inoue H, Toki M. Electrochimica Acta, 2000, 46: 59-65
[80] Wang G J, Fu L J, Zhao N H, Yang L C, Wu Y P, Wu H Q. Angew. Chem. Int. Ed., 2007, 46: 295-297
[81] Wang G J, Fu L J, Wang B, Zhao N H, Wu Y P, Holze R. J. Appl. Electrochem., 2008, 38: 579-581
[82] Wang G J, Zhao N H, Yang L C, Wu Y P, Wu H Q, Holze R. Electrochimica Acta, 2007, 52: 4911-4915
[83] Wang G J, Qu Q T, Wang B, Shi Y, Tian S, Wu Y P, Holze R. J. Power Sources, 2008, 189: 503-506
[84] Wang H B, Huang K L, Zeng Y Q, Zhao F G, Chen L Q. Electrochem. Solid State Lett., 2007, 10 (9): A199-A203
[85] Wang Y G, Lou J Y, Wu W, Wang C X. J. Electrochem. Soc., 2007, 154 (3): A228-A234
[86] Wu L, Dahn J R, Wainwright D. Science, 1994, 264: 1115-1118
[87] Li H Q, Zhai T Y, He P, Wang Y G, Hosono E, Zhou H S. J. Mater. Chem., 2011, 21: 1780-1787
[88] Pasquali M, Pistoia G. Electrochim. Acta, 1991, 36: 1549-1553

[89] Wang H Y, Wang W J, Ren Y, Huang K L, Liu S Q. J. Power Sources, 2012, 199: 263-269

[90] Wang H Y, Liu S Q, Ren Y, Wang W J, Tang A D. Energy & Environmental Science, 2012, 5: 6173- 6179

[91] Spahr M E, Novák P, Scheifele W, Haas O. J. Electrochem. Soc., 1998, 145: 421-427

[92] Kawakita J, Miura T, Kishi T. Solid State Ionics, 1999, 124: 21-28

[93] Xu J J, Zhang X T, Wang D J, Du Z L, Li T J. Chem. Lett., 2005, 34: 838-839

[94] Channu V S R, Holze R, Yeo I H, Mho S, Kalluru R R. Appl. Phys. A, 2011, 104: 707-711

[95] Yuan C, Li C, Ma B Q, Li X, Cao X Y. Mater. Sci., 2011, 17: 65-68

[96] Kawakita J, Miura T, Kishi T. Solid State Ionics, 1999, 124: 29-35

[97] Zhou G T, Wang X C, Yu J C. Cryst. Growth Des., 2005, 5: 969-974

[98] Yu J G, Yu J C, Ho W K, Wu L, Wang X C. J. Am. Chem. Soc., 2004, 126: 3422-3423

[99] Zhou D H, Liu S Q, Wang H Y, Yan G Q. Journal of Power Sources, 2013, 227: 111-117

[100] Rui X H, Zhu J X, Sim D H, Xu C, Zeng Y, Hng H H, Lim T M, Yan Q Y. Nanoscale, 2011, 3: 4752 -4758

[101] Hu Y S, Liu X, Müller J O, Schlgl R, Maier J, Su D S. Angew. Chem. Int. Ed., 2009, 48: 210-214

[102] Lin B Z, Liu S X. Acta Cryst., 1999, C55: 1961-1963

[103] Huang S D, Shan Y K. Chem. Commun., 1998, 1069-1070

[104] Wang H Y, Huang K L, Liu S Q, Huang C H, Wang W J, Ren Y. J. Power Sources, 2011, 196: 788-792

[105] Mai L Q, Lao C S, Hu B, Zhou J, Qi Y Y, Chen W, Gu Y D, Wang Z L. J. Phys. Chem. B, 2006, 110: 18138-18141

[106] Torardi C C, Miao C R. Chem. Mater. , 2002, 14: 4430-4433

[107] 王海燕(Wang H Y). 中南大学博士学位论文(Doctoral Dissertation of Central South University), 2012

[108] Wang H Y, Huang K L, Ren Y, Huang X B, Liu S Q, Wang W J. J. Power Sources, 2011, 196: 9786-9792

[109] Wang H Y, Ren Y, Wang W J, Huang X B, Huang K L, Wang Y. J. Power Sources, 2012, 199: 315-321

[110] Wang H Y, Huang K L, Huang C H, Liu S Q, Ren Y, Huang X B. J. Power Sources, 2011, 196: 5645 -5650

[1] Deying Mu, Zhu Liu, Shan Jin, Yuanlong Liu, Shuang Tian, Changsong Dai. The Recovery and Recycling of Cathode Materials and Electrolyte from Spent Lithium Ion Batteries in Full Process [J]. Progress in Chemistry, 2020, 32(7): 950-965.
[2] Zhan Wu, Xiaohan Li, Aowei Qian, Jiayu Yang, Wenkui Zhang, Jun Zhang. Electrochromic Energy-Storage Devices Based on Inorganic Materials [J]. Progress in Chemistry, 2020, 32(6): 792-802.
[3] Zhaoxiang Wang, Jun Ma, Yurui Gao, Shuai Liu, Xin Feng, Liquan Chen. Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials [J]. Progress in Chemistry, 2019, 31(11): 1591-1614.
[4] Yijia Shao, Bin Huang, Quanbing Liu, Shijun Liao. Preparation and Modification of Ni-Co-Mn Ternary Cathode Materials [J]. Progress in Chemistry, 2018, 30(4): 410-419.
[5] Meng Haowen, Ma Daqian, Yu Xiaohui, Yang Hongyan, Sun Yanli, Xu Xinhua. Tin-Metal-Carbon Composite Anode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2015, 27(8): 1110-1122.
[6] Lou Shuaifeng, Cheng Xinqun, Ma Yulin, Du Chunyu, Gao Yunzhi, Yin Geping. Nb-Based Oxides as Anode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2015, 27(2/3): 297-309.
[7] Liu Xin, Zhao Hailei, Xie Jingying, Wang Ke, Lv Pengpeng, Gao Chunhui. SnS2 Based Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2014, 26(09): 1586-1595.
[8] Chu Daobao, Li Jian, Yuan Ximei, Li Zilong, Wei Xu, Wan Yong. Tin-Based Alloy Anode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2012, 24(08): 1466-1476.
[9] Gao Pengfei, Yang Jun. Si-Based Composite Anode Materials for Li-Ion Batteries [J]. Progress in Chemistry, 2011, 23(0203): 264-274.
[10] Yang Li, Chen Jizhang, Tang Yufeng, Fang Shaohua. Li4Ti5O12 Anode Materials Applied in Lithium Ion Batteries [J]. Progress in Chemistry, 2011, 23(0203): 310-317.
[11] Tao Zhanliang, Wang Hongbo, Chen Jun. Si-Based Materials as the Anode of Lithium-Ion Batteries [J]. Progress in Chemistry, 2011, 23(0203): 318-327.
[12] Dong Quanfeng, Song Jie, Zheng Mingsen, Susanne Jacke, Wolfram Jaegermann. Investigation of Microscale Lithium Ion Batteries and the Key Materials [J]. Progress in Chemistry, 2011, 23(0203): 374-381.
[13] Chen Jingbo Zhao Hailei He Jianchao Wang Mengwei. Si-Based Composite Anode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2009, 21(10): 2115-2122.
[14] Pan Yuexiu Zhi Junge Tong Bin Zhao Wei Shen Jinbo Dong Yuping. Self-Assembled Fabrication, Photochemical and Electrochemical Properties of Macrocyclic Metallosupramolecules Based on Conjugated Terpyridine and Transition Metal Ions [J]. Progress in Chemistry, 2009, 21(09): 1763-1771.
[15] Zhang Jie|Cao Gaoping**|Yang Yusheng|Xu Bin|Zhang Wenfeng. Novel Carbon Materials for Electrochemical Double Layer Capacitors and Their Applications [J]. Progress in Chemistry, 2008, 20(10): 1495-1500.