中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (05): 726-734 DOI: 10.7536/PC120831 Previous Articles   Next Articles

• Review •

Chemical Synthesis of Molybdenum Disulfide and Its Applications as Hydrodesulphurization Catalysts

Liu Ning1, Wang Xuzhen*1,3, Xu Wenya1, Guo Decai2, Tang Jizhou2, Zhang Baolu2   

  1. 1. School of Chemistry, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China;
    2. School of Chemical Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China;
    3. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
  • Received: Revised: Online: Published:
PDF ( 1597 ) Cited
Export

EndNote

Ris

BibTeX

Molybdenum disulfide (MoS2), as a classical layered transition-metal dichalcogenide, have attracted much attention in recent years because of their wide utilization in catalytic hydrogenation, lubrication and photoelectricity fields. Nano- or micro-meter scaled materials exhibit many excellent capabilities in virtue of their special microstructures. Therefore, it is particularly significant to give impetus to the research of inorganic layered compounds through the synthesis experience of nano-/micro-meter sized MoS2 materials with specific morphologies and structures. Based on the recently numerous reports about nano- or micro-meter scaled MoS2 and their applications in the relevant fields, this review focuses on the latest progress in chemical synthetic methods of MoS2 micro- or nano-particles and MoS2-based composites with different morphology and property, including thermal decomposition, sulfidation of molybdenum oxides, hydrothermal/solvothermal and solution routes, as well as other novel combined physical-chemical techniques. The effects of various reaction conditions on the morphology and performance of MoS2 products have been discussed, and the characteristics of various methods have also been commented. In addition, the applications of MoS2 used as unsupported or supported catalysts in hydrodesulphurization of fossil fuel have been introduced, and the developing tendency and future prospect of MoS2 materials are projected. Contents
1 Introduction
2 Properties and structure of MoS2
3 Preparation of MoS2
3.1 Thermal decomposition
3.2 Sulfidation of molybdenum oxides
3.3 Hydrothermal/solvothermal process
3.4 Liquid precipitation
3.5 Other chemical synthesis methods
4 Application of MoS2 in hydrodesulphurization
4.1 Supported MoS2 catalysts
4.2 Unsupported MoS2 catalysts
5 Summary and perspective

CLC Number: 

[1] Chianelli R R, Berhault G, Torres B. Catal. Today, 2009, 147: 275-286
[2] Wang S T, An C H, Yuan J K. Materials, 2010, 3: 401-433
[3] 柴永明(Chai Y M), 安高军(An G J), 柳云骐(Liu Y Q), 刘晨光(Liu C G). 化学进展(Progress in Chemistry), 2007, 19(2/3): 234-242
[4] Rapoport L, Fleischer N, Tenne R. J. Mater. Chem., 2005, 15: 1782-1788
[5] Hwang H, Kim H, Cho J. Nano Lett., 2011, 11: 4826-4830
[6] Xiao J, Choi D W, Cosimbescu L, Koech P, Liu J, Lemmon J P. Chem. Mater., 2010, 22: 4522-4524
[7] Viswanath R N, Ramasamy S. J. Mater. Sci., 1990, 25: 5029-5035
[8] Speight J G. Lange’s Handbook of Chemistry (16th ed.). NY: McGraw-Hill, 2005. 1.43, 1.75
[9] 刘光启(Liu G Q), 马连湘(Ma L X), 刘杰(Liu J). 化学化工物性数据手册-无机卷(第一版)(Handbook of Physical Property Data for Chemistry and Chemical Engineering- Vol. Inorganic (1st ed.) ). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2002. 396
[10] Whittingham M S. J. Electroanal. Chem., 1981, 118: 229-239
[11] Kibsgaard J, Lauritsen J V, Laegsgaard E, Clausen B S, Topsoe H, Besenbacher F. J. Am. Chem. Soc., 2006, 128: 13950-13958
[12] 李汶军(Li W J), 施尔畏(Shi E W), 郑燕青(Zheng Y Q), 吴南春(Wu N C), 殷之文(Yin Z W). 无机材料学报(Journal of Inorganic Materials), 2000, 15(3): 392-396
[13] Xiang Q, Yu J, Jaroniec M. J. Am. Chem. Soc., 2012, 134: 6575-6578
[14] Chen Z, Cummins D, Reinecke B N, Clark E, Sunkara M K, Jaramillo T F. Nano Lett., 2011, 11: 4168-4175
[15] Miremadi B K, Singh R C, Morrison S R, Colbow K. Appl. Phys. A, 1996, 63: 271-275
[16] Li X L, Ge J P, Li Y D. Chem. Eur. J., 2004, 10: 6163-6171
[17] Wu H H, Yang R, Song B M, Han Q S, Li J Y, Zhang Y, Fang Y, Tenne R, Wang C. ACS Nano, 2011, 5: 1276-1281
[18] Chen J, Li S L, Xu Q, Tanaka K. Chem. Commun., 2002, 1722-1723
[19] Tian Y, He Y, Zhu Y. Mater. Chem. Phys., 2004, 87: 87-90
[20] Deepak F L, Esparza R, Borges B, Lopez-Lozano X, Jose-Yacaman M. Catal. Lett., 2011, 141: 518-524
[21] Li W J, Shi E W, Ko J M, Chen Z Z, Ogino H, Fukuda T. J. Cryst. Growth, 2003, 250: 418-422
[22] Lou X W, Zeng H C. Chem. Mater., 2002, 14: 4781-4789
[23] Albiter M A, Huirache-Acuna R, Paraguay-Delgado F, Rico J L, Alonso-Nunez G. Nanotechnology, 2006, 17: 3473-3481
[24] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J, Lin T W. Adv. Mater., 2012, 24: 2320-2325
[25] Altavilla C, Sarno M, Ciambelli P. Chem. Mater., 2011, 23: 3879-3885
[26] Ghosh S K, Bera T, Karacasu O, Swarnakar A, Buijnsters J G, Celis J P. Electrochim. Acta, 2011, 56: 2433-2442
[27] Tian Y, Zhao X, Shen L, Meng F Y, Tang L Q, Deng Y H, Wang Z C. Mater. Lett., 2006, 60: 527-529
[28] Wei R, Yang H, Du K, Fu W Y, Tian Y M, Yu Q J, Liu S K, Li M H, Zou G T. Mater. Chem. Phys., 2008, 108: 188-191
[29] Dong B, Chai Y M, Liu Y Q, Liu C G. Adv. Eng. Mater., 2011, 194/196: 785-789
[30] Ye L, Guo W, Yang Y, Du Y F, Xie Y. Chem. Mater., 2007, 19: 6331-6337
[31] Ye L, Wu C, Guo W, Xie Y. Chem. Commun., 2006, 4738-4740
[32] Tuxen A, Kibsgaard J, Gobel H, Laegsgaard E, Topsoe H, Lauritsen J V, Besenbacher F. ACS Nano, 2010, 4: 4677-4682
[33] Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I. Science, 2007, 317: 100-102
[34] Hu J J, Sanders J H, Zabinski J S. J. Mater. Res., 2006, 21: 1033-1040
[35] Teer D G, Hampshire J, Fox V, Bellido-Gonzalez V. Surf. Coat. Technol., 1997, 94/95: 572-577
[36] Bertolazzi S, Brivio J, Kis A. ACS Nano, 2011, 5: 9703-9709
[37] Wang H W, Skeldon P, Thompson G E. J. Mater. Sci., 1998, 33: 3079-3083
[38] 马江虹(Ma J H). 有色金属(Nonferrous Metals), 2005, 57(4): 27-30
[39] Calais C, Matsubayashi N, Geantet C, Yoshimura Y, Shimada H, Nishijima A, Lacroix M, Breysse M. J. Catal., 1998, 174: 130-141
[40] Afanasiev P, Bezverkhy I. Chem. Mater., 2002, 14: 2826-2830
[41] Alonso G, Del V M, Cruz J, Petranovskii V, Licea-Claverie A, Fuentes S. Catal. Today, 1998, 43: 117-122
[42] Romero-Rivera R, Delvalle M, Alonso G, Flores E, Castillon F, Fuentes S, Cruz-Reyes J. Catal. Today, 2008, 130: 354-360
[43] Iijima S. Nature, 1991, 354: 56-58
[44] Cheng F Y, Chen J, Gou X L. Adv. Mater., 2006, 18: 2561-2564
[45] Zelenski C M, Dorhout P K. J. Am. Chem. Soc., 1998, 120: 734-742
[46] Afanasiev P. C. R. Chim., 2008, 11: 159-182
[47] Elizondo-Villarreal N, Velázquez-Castillo R, Galvn D H, Carnacho A, Yacaman M J. Appl. Catal. A, 2007, 328: 88-97
[48] Shi Y, Wan Y, Liu R, Tu B, Zhao D Y. J. Am. Chem. Soc., 2007, 129: 9522-9531
[49] Stender C L, Greyson E C, Babayan Y, Odom T W. Adv. Mater., 2005, 17: 2837-2841
[50] Muijsers J C, Weber T, van Hardeveld R M, Zandbergen H W, Niemantsverdriet J W. J. Catal., 1995, 157: 698-705
[51] Weber T, Muijsers J C, van Wolput H J, Verhagen C P J, Niemantsverdriet J W. J. Phys. Chem., 1996, 100: 14144-14150
[52] Farag H. Energy Fuels, 2002, 16: 944-950
[53] Peng Y, Meng Z, Zhong C, Lu J, Yu W C, Yang Z P, Qian Y T. J. Solid State Chem., 2001, 159: 170-173
[54] Ma L, Chen W X, Li H, Zheng Y F, Xu Z D. Mater. Lett., 2008, 62: 797-799
[55] Li Y, Wang H, Xie L, Liang Y Y, Hong G S, Dai H J. J. Am. Chem. Soc., 2011, 133: 7296-7299
[56] Chang K, Chen W X. ACS Nano, 2011, 5: 4720-4728
[57] Chang K, Chen W X, Ma L, Li H, Li H, Huang F H, Xu Z D, Zhang Q B, Lee J Y. J. Mater. Chem., 2011, 21: 6251-6257
[58] Bezverkhy I, Afanasiev P, Lacroix M. Inorg. Chem., 2000, 39: 5416-5417
[59] Hu K H, Cai Y K, Shao G Q, Cui X L. Reac. Kinet. Mech. Cat., 2011, 103: 153-164
[60] Wu Z, Wang D, Sun A. Mater. Lett., 2009, 63: 2591-2593
[61] Skrabalak S E, Suslick K S. J. Am. Chem. Soc., 2005, 127: 9990-9991
[62] Uzcanga I, Bezverkhyy I, Afanasiev P, Scott C, Vrinat M. Chem. Mater., 2005, 17: 3575-3577
[63] Cho A, Koh J H, Lee S I, Moon S H. Catal. Today, 2010, 149: 47-51
[64] Hoshyargar F, Yella A, Panthöfer M, Tremel W. Chem. Mater., 2011, 23: 4716-4720
[65] Schneemeyer L F, Cohen U. J. Electrochem. Soc., 1983, 130: 1536-1539
[66] Du G D, Guo Z P, Wang S Q, Zeng R, Chen Z X, Liu H K. Chem. Commun., 2010, 1106-1108
[67] Xiao J, Wang X, Yang X Q, Xun S D, Liu G, Koech P K, Liu J, Lemmon J P. Adv. Funct. Mater., 2011, 21: 2840-2846
[68] Castillo K, Manciu F, Parsons J G, Chianelli R R. J. Mater. Res., 2007, 22: 2747-2757
[69] 安高军(An G J), 柳云骐(Liu Y Q), 柴永明(Chai Y M), 刘晨光(Liu C G). 化学进展(Progress in Chemistry), 2007, 19(2/3): 243-249
[70] Breysse M, Furimsky E, Kasztelan S, Lacroix M, Perot G. Cat. Rev. Sci. Eng., 2002, 44: 651-735
[71] Liu B, Chai Y M, Wang Y J, Zhang T T, Liu Y Q, Liu C G. Appl. Catal. A, 2010, 388: 248-255
[72] Ge H, Li X K, Qin Z F, Lu Z J, Wang J G. Catal. Commun., 2008, 9: 2578-2582
[73] Li X, Wang A J, Egorova M, Prins R. J. Catal., 2007, 250: 283-293
[74] Kibsgaard J, Clausen B S, Topsøe H, Laegsgaard E, Lauritsen J V, Besenbacher F. J. Catal., 2009, 263: 98-103
[75] 尹海亮(Yin H L), 周同娜(Zhou T N), 柴永明(Chai Y M), 柳云骐(Liu Y Q), 刘晨光(Liu C G). 化学进展(Progress in Chemistry), 2012, 24(7): 1252-1261
[76] Surisetty V R, Eswaramoorthi I, Dalai A K. Fuel, 2012, 96: 77-84
[77] 王春雷(Wang C L), 马丁(Ma D), 包信和(Bao X H). 化学进展(Progress in Chemistry), 2009, 21(9): 1705-1721
[78] Breysse M, Afanasiev P, Geantet C, Vrinat M. Catal. Today, 2003, 86: 5-16
[79] Aguirre-Gutiérrez A, de la Fuente J A, de los Reyes J A, del Angel P, Vargas A. J. Mol. Catal. A: Chem., 2011, 346: 12-19
[80] Klimova T, Vara P M, Lee I P. Catal. Today, 2010, 150: 171-178
[81] Kulkarni G U, Rao C N. Catal. Lett., 1991, 9: 427-440
[82] Lewis J M, Kydd R A. J. Catal., 1992, 136: 478-486
[83] Eijsbouts S, Mayo S W, Fujita K. Appl. Catal. A, 2010, 322: 58-66
[84] Plantenga F L, Cerfontain R, Eijsbouts S, van Houtert F, Anderson G H, Miseo S, Soled S, Riley K, Fujita K, Inoue Y. Studies Surface Science and Catalysis. Tokyo: Kodansha Ltd., 2003. 145: 407-410
[85] Gochi Y, Ornelas C, Paraguay E, Fuentes S, Alvarez L, Rico J L, Alonso-Nunez G. Catal. Today, 2005, 107/108: 531-536
[86] Olivas A, Galván D H, Alonso G, Fuentes S. Appl. Catal. A, 2009, 352: 10-16
[87] Zhang B S, Yi Y J, Zhang W, Liang C H, Su D S. Mater. Charact., 2007, 62: 684-690
[88] Yi Y, Jin X, Wang L, Zhang Q M, Xiong G, Liang C H. Catal. Today, 2011, 175: 460-466
[89] Genuit D, Afanasiev P, Vrinat M. J. Catal., 2005, 235: 302-317
[90] Yoosuk B, Kim J H, Song C, Ngamcharussrivichai C, Prasassarakich P. Catal. Today, 2008, 130: 14-23

[1] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[2] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[3] Quanfei Zhu, Jundi Hao, Jingwen Yan, Yu Wang, Yuqi Feng. FAHFAs: Biological Functions, Analysis and Synthesis [J]. Progress in Chemistry, 2021, 33(7): 1115-1125.
[4] Shifang Yuan, Lijing Wang, Qiuyue Zhang, Wenhua Sun. Tridentate Titanium Precatalysts Toward Olefin Polymerization [J]. Progress in Chemistry, 2017, 29(12): 1462-1470.
[5] Hu Daihua, Chen Wang, Wang Yongji. Synthesis and Structure-Activity Relationship of Active Vitamin D3 Analogues [J]. Progress in Chemistry, 2016, 28(6): 839-859.
[6] Liang Yanyu, Tang Shan, Zheng Jishen. Cell-Permeable Cyclic Peptides [J]. Progress in Chemistry, 2014, 26(11): 1793-1800.
[7] Shi Yugang, Dang Yali, Liu Yuhua, Bai Xue. Microbial and Chemical Production of Chondroitin Sulfate [J]. Progress in Chemistry, 2014, 26(08): 1378-1394.
[8] Liu Xiaoyang. Chemistry under High Pressure [J]. Progress in Chemistry, 2009, 21(0708): 1373-1388.
[9] . Chemical Synthesis of Rebeccamycin and Its Analogues [J]. Progress in Chemistry, 2008, 20(11): 1699-1707.
[10] Qiang Ma1|Yong Ju1,2**|Yufen Zhao1. Chemical Synthesis of Glycoconjugates [J]. Progress in Chemistry, 2006, 18(09): 1110-1120.
[11] Han Difei,Wang Anjie,Kong Xiangguo. Applications of Mesoporous MCM-41 in Heterogeneous Catalysis of Synthesis of Fine Chemicals [J]. Progress in Chemistry, 2002, 14(02): 98-.
[12] Zeng Fanxing,Jiang Hualiang,Yang Yushe,Chen Kaixian,Ji Ruyun**. Progress in Synthesis and Structural Modification of Huperzine A [J]. Progress in Chemistry, 2000, 12(01): 63-.
[13] Zhang Zhaorong,Suo Jishuan,Zhang Xiaoming,Li Shuben*. New Vistas for Silica-Based Mesoporous Molecular Sieves [J]. Progress in Chemistry, 1999, 11(01): 11-.
[14] Guo Zhixin,Li Yuliang,Zhu Daoben. Advances in Chemistry of the Fullerenes [J]. Progress in Chemistry, 1998, 10(01): 1-.