中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC120818 Previous Articles   Next Articles

• Review •

Organic Micro- and Nano-Crystal Field-Effect Transistors

Song Jingyi1,2, Jiang Lang*1, Dong Huanli1, Hu Wenping*1   

  1. 1. Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. College of Chemistry, Beijing Normal University, Beijing 100875, China
  • Received: Revised: Online: Published:
PDF ( 1765 ) Cited
Export

EndNote

Ris

BibTeX

The perfect molecular order, the absence of grain boundaries and the minimized concentration of charge traps in organic single crystals make them extremely promising for the study of intrinsic properties of organic materials and fabrication of high performance devices and circuits. It also provides the opportunity for revealing the relationship between the microscopic molecular packing and the macroscopic charge transport of the organic semiconductor materials. Due to the weak intermolecular interaction of Van der Waals' force, organic single crystals mostly exist as micro- and nano-crystals. Currently, various material systems have been applied in the fabrication of micro- and nano-crystal field-effect transistors (FETs) and these devices have enabled both the screen of high-performance materials and a better understanding of the charge transport physics of organic semiconductors. Here the structure and operation modes of the organic single crystal field-effect transistors (OSCFETs), growth methods, characterization methods and device fabrication methods of organic micro- and nano-crystals are introduced respectively. Moreover, the progress made during the past three years on organic micro- and nano-cyrstal semiconductor materials and devices are summarized. Finally, the hot topics, tendency and challenges of the organic micro- and nano-cyrstal studies are discussed as well. Contents
1 Introduction
2 Structures and operation mechanism of organic single crystal field-effect transistors
3 Crystallization methods
3.1 Gas phase methods
3.2 Liquid phase methods
4 Characterization methods
4.1 X-ray diffraction
4.2 Atomic force microscope
4.3 Scanning electron microscope
4.4 Transmission electron microscope and selected area electron diffraction
5 Fabrication methods
5.1 Direct fabrication method
5.2 Lamination method
5.3 Mask method
5.4 Au film gluing method
5.5 Drop-casting method
6 Central issues and tendency of present researches
6.1 Design and synthesis of high performance materials
6.2 Controlled growth of micro- and nano-crystals
6.3 Production of large area crystalline films
6.4 Multifunction of organic micro- and nano-crystals
6.5 Tendency of international cooperation and interdisciplinary development
7 Challenges of micro- and nano-crystal research
7.1 Transport theory of charge carriers in organic micro- and nano-crystals
7.2 Development of air-stable n type micro- and nano-crystal materials
7.3 Standardization of fabrication methods
7.4 Development of high performance and large scale crystal circuits
8 Conclusion and outlook

CLC Number: 

[1] Podzorov V, Menard E, Borissov A, Kiryukhin V, Rogers J A, Gershenson M E. Phys. Rev. Lett., 2004, 93: art. no. 086602
[2] Jurchescu O D, Popinciuc M, van Wees B J, Palstra T T M. Adv. Mater., 2007, 19: 688-692
[3] Minemawari H, Yamada T, Matsui H, Tsutsumi J Y, Haas S, Chiba R, Kumai R, Hasegawa T. Nature, 2011, 475: 364-367
[4] Takeya J, Yamagishi M, Tominari Y, Hirahara R, Nakazawa Y, Nishikawa T, Kawase T, Shimoda T, Ogawa S. Appl. Phys. Lett., 2007, 90: art. no. 102120
[5] Jiang L, Hu W P, Wei Z M, Xu W, Meng H. Adv. Mater., 2009, 21: 3649-3653
[6] Jurchescu O D, Subramanian S, Kline R J, Hudson S D, Anthony J E, Jackson T N, Gundlach D J. Chem. Mater., 2008, 20: 6733-6737
[7] Takahashi Y, Hasegawa T, Horiuchi S, Kumai R, Tokura Y, Saito G. Chem. Mater., 2007, 19: 6382-6384
[8] Yu L, Li X, Smith J, Tierney S, Sweeney R, Kjellander B K C, Gelinck G H, Anthopoulos T D, Stingelin N. J. Mater. Chem., 2012, 22: 9458-9461
[9] Minder N A, Ono S, Chen Z, Facchetti A, Morpurgo A F. Adv. Mater., 2012, 24: 503-508
[10] Li H, Tee B C K, Cha J J, Cui Y, Chung J W, Lee S Y, Bao Z. J. Am. Chem. Soc., 2012, 134: 2760-2765
[11] Lv A, Puniredd S R, Zhang J, Li Z, Zhu H, Jiang W, Dong H, He Y, Jiang L, Li Y, Pisula W, Meng Q, Hu W, Wang Z. Adv. Mater., 2012, 24: 2626-2630
[12] Crone B, Dodabalapur A, Lin Y Y, Filas R W, Bao Z, LaDuca A, Sarpeshkar R, Katz H E, Li W. Nature, 2000, 403: 521-523
[13] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H. Nature, 2004, 432: 488-492
[14] Klauk H, Zschieschang U, Pflaum J, Halik M. Nature, 2007, 445: 745-748
[15] Sekitani T, Zschieschang U, Klauk H, Someya T. Nat. Mater., 2010, 9: 1015-1022
[16] Gelinck G H, Huitema H E A, van Veenendaal E, Cantatore E, Schrijnemakers L, van der Putten J B P H, Geuns T C T, Beenhakkers M, Giesbers J B, Huisman B H, Meijer E J, Benito E M, Touwslager F J, Marsman A W, van Rens B J E, de Leeuw D M. Nat. Mater., 2004, 3: 106-110
[17] Huitema H E A, Gelinck G H, van der Putten J B P H, Kuijk K E, Hart C M, Cantatore E, de Leeuw D M. Adv. Mater., 2002, 14: 1201-1204
[18] Forrest S R. Nature, 2004, 428: 911-918
[19] Sekitani T, Nakajima H, Maeda H, Fukushima T, Aida T, Hata K, Someya T. Nat. Mater., 2009, 8: 494-499
[20] Crone B K, Dodabalapur A, Sarpeshkar R, Gelperin A, Katz H E, Bao Z. J. Appl. Phys., 2002, 91: 10140-10146
[21] Sekitani T, Yokota T, Zschieschang U, Klauk H, Bauer S, Takeuchi K, Takamiya M, Sakurai T, Someya T. Science, 2009, 326: 1516-1519
[22] Mannsfeld S C B, Tee B C K, Stoltenberg R M, Chen C V H H, Barman S, Muir B V O, Sokolov A N, Reese C, Bao Z. Nat. Mater., 2010, 9: 859-864
[23] Brown A R, Jarrett C P, de Leeuw D M, Matters M. Synth. Met., 1997, 88: 37-55
[24] Dimitrakopoulos C D, Malenfant P R L. Adv. Mater., 2002, 14: 99-117
[25] Laudise R A, Kloc C, Simpkins P G, Siegrist T. J. Cryst. Growth, 1998, 187: 449-454
[26] Jiang H, Tan K J, Zhang K K, Chen X, Kloc C. J. Mater. Chem., 2011, 21: 4771-4773
[27] Kunugi Y, Arai T, Kobayashi N, Otsuki H, Nishinaga T, Okamoto K. J. Photopolym. Sci. Technol., 2011, 24: 345-348
[28] Roberson L B, Kowalik J, Tolbert L M, Kloc C, Zeis R, Chi X, Fleming R, Wilkins C. J. Am. Chem. Soc., 2005, 127: 3069-3075
[29] 李荣金(Li R J). 中国科学院研究生院博士学位论文(Doctoral Dissertation of Graduate University of Chinese Academy of Sciences), 2009
[30] Kim K H, Bae S Y, Kim Y S, Hur J A, Hoang M H, Lee T W, Cho M J, Kim Y, Kim M, Jin J I, Kim S J, Lee K, Lee S J, Choi D H. Adv. Mater., 2011, 23: 3095-3099
[31] Sun Q, Dong G, Zhao H, Qiao J, Liu X, Duan L, Wang L, Qiu Y. Org. Electron., 2011, 12: 1674-1682
[32] Hang J, Geng H, Virk T S, Zhao Y, Tan J, Di C, Xu W, Singh K, Hu W, Shuai Z, Liu Y, Zhu D. Adv. Mater., 2012, 24: 2603-2607
[33] Hoang M H, Choi D H, Lee S J. Synth. Met., 2012, 162: 419-425
[34] Sarker B K, Liu J, Zhai L, Khondaker S I. ACS Appl. Mater. Interface, 2011, 3: 1180-1185
[35] Tian H, Han Y, Bao C, Yan D, Geng Y, Wang F. Chem. Commun., 2012, 48: 3557-3559
[36] Akkerman H B, Chang A C, Verploegen E, Bettinger C J, Toney M F, Bao Z. Org. Electron., 2011, 13: 235-243
[37] Liu C, Minari T, Lu X, Kumatani A, Takimiya K, Tsukagoshi K. Adv. Mater., 2011, 23: 523-526
[38] Sun Q J, Dong G F, Zheng H Y, Zhao H Y, Qiao J, Duan L, Wang L D, Zhang F S, Qiu Y. Acta Phys. Chem. Sin., 2011, 27: 1893-1899
[39] Chien C T, Lin C C, Watanabe M, Lin Y D, Chao T H, Chiang T, Huang X H, Wen Y S, Tu C H, Sun C H, Chow T J. J. Mater. Chem., 2012, 22: 13070-13075
[40] Jiang H, Yang X, Wang E, Fu Y, Liu Y, Li H, Cui Z, Liu Y, Hu W. Synth. Met., 2010, 161: 136-142
[41] Li R, Dong H, Zhan X, Li H, Wen S, Deng W, Han K, Hu W. J. Mater. Chem., 2011, 21: 11335-11339
[42] Oton F, Pfattner R, Oxtoby N S, Mas-Torrent M, Wurst K, Fontrodona X, Olivier Y, Cornil J, Veciana J, Rovira C. J. Org. Chem., 2011, 76: 154-163
[43] Inada Y, Yamao T, Inada M, Itami T, Hotta S. Synth. Met., 2011, 161: 1869-1877
[44] Katagiri T, Shimizu Y, Terasaki K, Yamao T, Hotta S. Org. Electron., 2011, 12: 8-14
[45] Oton F, Pfattner R, Pavlica E, Olivier Y, Moreno E, Puigdollers J, Bratina G, Cornil J, Fontrodona X, Mas-Torrent M, Veciana J, Rovira C. Chem. Mater., 2011, 23: 851-861
[46] Zhang X, Coleman A C, Katsonis N, Browne W R, van Wees B J, Feringa B L. Chem. Commun., 2010, 7539-7541
[47] Maples R D, Hilburn M E, Murdianti B S, Hikkaduwa Koralege R S, Williams J S, Kuriyavar S I, Ausman K D. J. Colloid Interface Sci., 2012, 370: 27-31
[48] Liu S Z, Wu X, Zhang A Q, Qiu J J, Liu C M. Langmuir, 2011, 27: 3982-3990
[49] Wang C, Liang Z, Liu Y, Wang X, Zhao N, Miao Q, Hu W, Xu J. J. Mater. Chem., 2011, 21: 15201-15204
[50] Ashizawa M, Niimura T, Yu Y, Tsuboi K, Matsumoto H, Yamada R, Kawauchi S, Tanioka A, Mori T. Tetrahedron, 2012, 68: 2790-2798
[51] Hur J A, Shin J, Lee T W, Kim K H, Cho M J, Choi D H. Bull. Korean Chem. Soc., 2012, 33: 1653-1658
[52] Wang S, Gao P, Liebewirth I, Kirchhoff K, Pang S, Feng X, Pisula W, Muellen K. Chem. Mater., 2011, 23: 4960-4964
[53] Hoang M H, Kim Y, Kim S J, Choi D H, Lee S J. Chem. Eur. J., 2011, 17: 7772-7776
[54] Morita S. J. Electron. Microsc., 2011, 60: S199-S211
[55] Binnig G, Quate C F, Gerber C. Phys. Rev. Lett., 1986, 56: 930-933
[56] Jiang H, Zhao H, Zhang K K, Chen X, Kloc C, Hu W. Adv. Mater., 2011, 23: 5075-5080
[57] Crewe A V, Park P. US 3191028, 1963
[58] Wang Z L. J. Phys. Chem. B, 2000, 104: 1153-1175
[59] Li R, Dong H, Zhan X, He Y, Li H, Hu W. J. Mater. Chem., 2010, 20: 6014-6018
[60] Hoesterey D C, Letson G M. J. Phys. Chem. Solids, 1963, 24: 1609-1615
[61] Warta W, Karl N. Phys. Rev. B, 1985, 32: 1172-1182
[62] Campbell I H, Smith D L, Neef C J, Ferraris J P. Appl. Phys. Lett., 1999, 74: 2809-2811
[63] De Boer R W I, Jochemsen M, Klapwijk T M, Morpurgo A F, Niemax J, Tripathi A K, Pflaum J. J. Appl. Phys., 2004, 95: 1196-1202
[64] Podzorov V, Sysoev S E, Loginova E, Pudalov V M, Gershenson M E. Appl. Phys. Lett., 2003, 83: 3504-3506
[65] Islam M M, Pola S, Tao Y T. Chem. Commun., 2011, 6356-6358
[66] Islam M M, Valiyev F, Lu H F, Kuo M Y, Chao I, Tao Y T. Chem. Commun., 2011, 2008-2010
[67] Nakanotani H, Kakizoe H, Adachi C. Solid State Commun., 2011, 151: 93-96
[68] Nishinaga T, Miyata T, Tateno M, Koizumi M, Takase M, Iyoda M, Kobayashi N, Kunugi Y. J. Mater. Chem., 2011, 21: 14959-14966
[69] Yi H T, Chen Y, Czelen K, Podzorov V. Adv. Mater., 2011, 23: 5807-5811
[70] De Boer R W I, Klapwijk T M, Morpurgo A F. Appl. Phys. Lett., 2003, 83: 4345-4347
[71] Newman C R, Chesterfield R J, Merlo J A, Frisbie C D. Appl. Phys. Lett., 2004, 85: 422-424
[72] Takeya J, Goldmann C, Haas S, Pernstich K P, Ketterer B, Batlogg B. J. Appl. Phys., 2003, 94: 5800-5804
[73] Zaumseil J, Someya T, Bao Z, Loo Y L, Cirelli R, Rogers J A. Appl. Phys. Lett., 2003, 82: 793-795
[74] Sokolov A N, Atahan-Evrenk S, Mondal R, Akkerman H B, Sanche-Carrera R S, Granados-Focil S, Schrier J, Mannsfeld S C B, Zoombelt A P, Bao Z, Aspuru-Guzik A. Nature Commun., 2011, 2: 1-8
[75] Horowitz G, Garnier F, Yassar A, Hajlaoui R, Kouki F. Adv. Mater., 1996, 8: 52-54
[76] Tang Q, Li H, He M, Hu W, Liu C, Chen K, Wang C, Liu Y, Zhu D. Adv. Mater., 2006, 18: 65-68
[77] Tang Q X, Jiang L, Tong Y H, Li H X, Liu Y L, Wang Z H, Hu W P, Liu Y Q, Zhu D B. Adv. Mater., 2008, 20: 2947-2951
[78] Jiang L, Gao J, Wang E, Li H, Wang Z, Hu W, Jiang L. Adv. Mater., 2008, 20: 2735-2740
[79] Li R, Jiang L, Meng Q, Gao J, Li H, Tang Q, He M, Hu W, Liu Y, Zhu D. Adv. Mater., 2009, 21: 4492-4495
[80] Tang Q, Tong Y, Li H, Ji Z, Li L, Hu W, Liu Y, Zhu D. Adv. Mater., 2008, 20: 1511-1515
[81] Jiang H, Yang X, Cui Z, Liu Y, Li H, Hu W, Liu Y, Zhu D. Appl. Phys. Lett., 2007, 91: art. no. 123505
[82] Mas-Torrent M, Durkut M, Hadley P, Ribas X, Rovira C. J. Am. Chem. Soc., 2004, 126: 984-985
[83] Briseno A L, Mannsfeld S C B, Lu X, Xiong Y, Jenekhe S A, Bao Z, Xia Y. Nano Lett., 2007, 7: 668-675
[84] Zhou Y, Lei T, Wang L, Pei J, Cao Y, Wang J. Adv. Mater., 2010, 22: 1484-1487
[85] Mitsui C, Soeda J, Miwa K, Tsuji H, Takeya J, Nakamura E. J. Am. Chem. Soc., 2012, 134: 5448-5451
[86] He T, Zhang X, Jia J, Li Y, Tao X. Adv. Mater., 2012, 24: 2171-2175
[87] Tan L, Jiang W, Jiang L, Jiang S, Wang Z, Yan S, Hu W. Appl. Phys. Lett., 2009, 94: art. no. 153306
[88] Wei Z M, Hong W, Geng H, Wang C L, Liu Y L, Li R J, Xu W, Shuai Z G, Hu W P, Wang Q R, Zhu D B. Adv. Mater., 2010, 22: 2458-2462
[89] Haas S, Takahashi Y, Takimiya K, Hasegawa T. Appl. Phys. Lett., 2009, 95: art. no. 022111
[90] Jiang L, Dong H, Meng Q, Li H, He M, Wei Z, He Y, Hu W. Adv. Mater., 2011, 23: 2059-2063
[91] Guo Y, Du C, Yu G, Di C, Jiang S, Xi H, Zheng J, Yan S, Yu C, Hu W, Liu Y. Adv. Funct. Mater., 2010, 20: 1019-1024
[92] Jiang W, Zhou Y, Geng H, Jiang S, Yan S, Hu W, Wang Z, Shuai Z, Pei J. J. Am. Chem. Soc., 2011, 133: 1-3
[93] Li Y, Liu C, Kumatani A, Darmawan P, Minari T, Tsukagoshi K. AIP Advances, 2011, 1: art. no. 022149
[94] Chung D S, Park J W, Park J H, Moon D, Kim G H, Lee H S, Lee D H, Shim H K, Kwon S K, Park C E. J. Mater. Chem., 2010, 20: 524-530
[95] Li H, Tee B C K, Giri G, Chung J W, Lee S Y, Bao Z. Adv. Mater., 2012, 24: 2588-2591
[96] Kumatani A, Liu C, Li Y, Darmawan P, Takimiya K, Minari T, Tsukagoshi K. Sci. Rep. UK, 2012, 2: 393-393
[97] Liu C, Minari T, Li Y, Kumatani A, Lee M V, Pan S H A, Takimiya K, Tsukagoshi K. J. Mater. Chem., 2012, 22: 8462-8469
[98] Nakayama K, Hirose Y, Soeda J, Yoshizumi M, Uemura T, Uno M, Li W, Kang M J, Yamagishi M, Okada Y, Miyazaki E, Nakazawa Y, Nakao A, Takimiya K, Takeya J. Adv. Mater., 2011, 23: 1626-1629
[99] Minari T, Liu C, Kano M, Tsukagoshi K. Adv. Mater., 2012, 24: 299-306
[100] Wang H, Li F, Ravia I, Gao B, Li Y, Medvedev V, Sun H, Tessler N, Ma Y. Adv. Funct. Mater., 2011, 21: 3770-3777
[101] Bae I, Kang S J, Shin Y J, Park Y J, Kim R H, Mathevet F, Park C. Adv. Mater., 2011, 23: 3398-3402
[102] Goto O, Tomiya S, Murakami Y, Shinozaki A, Toda A, Kasahara J, Hobara D. Adv. Mater., 2012, 24: 1117-1122
[103] Kim Y H, Yoo B, Anthony J E, Park S K. Adv. Mater., 2012, 24: 497-502
[104] Zhang C, Zhang X, Zhang X, Fan X, Jie J, Chang J C, Lee C S, Zhang W, Lee S T. Adv. Mater., 2008, 20: 1720
[105] Zhang C, Zhang X, Zhang X, Ou X, Zhang W, Jie J, Chang J C, Lee C S, Lee S T. Adv. Mater., 2009, 21: 4172-4175
[106] Jiang L, Dong H, Hu W. Soft Matter, 2011, 7: 1615-1630
[107] Meng Q, Dong H, Hu W, Zhu D. J. Mater. Chem., 2011, 21: 11708-11721
[108] Zhang Y J, Dong H L, Tang Q X, Ferdous S, Liu F, Mannsfeld S C B, Hu W P, Briseno A L. J. Am. Chem. Soc., 2010, 132: 11580-11584
[109] Kajiwara K, Terasaki K, Yamao T, Hotta S. Adv. Funct. Mater., 2011, 21: 2854-2860
[110] Di C, Zhang F, Zhu D. Adv. Mater., 2012, DOI: 10.1002/adma. 201201502
[111] Li J, Takaishi S, Fujinuma N, Endo K, Yamashita M, Matsuzaki H. J. Mater. Chem., 21: 17662-17666
[112] Molinari A S, Alves H, Chen Z, Facchetti A, Morpurgo A F. J. Am. Chem. Soc., 2009, 131: 2462-2463
[113] Dacuna J, Salleo A. Phys. Rev. B, 2011, 84: art. no. 195209
[114] Ishii H, Honma K, Kobayashi N, Hirose K. Phys. Rev. B, 2012, 85: art. no. 245206
[115] Marumoto K, Arai N, Goto H, Kijima M, Murakami K, Tominari Y, Takeya J, Shimoi Y, Tanaka H, Kuroda S, Kaji T, Nishikawa T, Takenobu T, Iwasa Y. Phys. Rev. B, 2011, 83: art. no. 075302
[116] Nan G, Li Z. Org. Electron., 2012, 13: 1229-1236
[117] Northrup J E. Appl. Phys. Lett., 2011, 99: art. no. 062111
[118] Jiang L, Dong H, Hu W. J. Mater. Chem. 2010, 20: 4994-5007
[119] Li R, Hu W, Liu Y, Zhu D. Acc. Chem. Res., 2010, 43: 529-540
[120] Tang Q, Tong Y, Hu W, Wan Q, Bjrnholm T. Adv. Mater., 2009, 21: 4234-4237

[1] Yufu Chen, Xianggao Li, Yin Xiao, Shirong Wang. Solution Processed Large-Scale Small Molecular Organic Field-Effect Transistors [J]. Progress in Chemistry, 2017, 29(4): 359-372.
[2] Yang Liu, Lei Ting, Pei Jian*, Liu Chenjiang* . Design Strategy , Processing and Applications of Organic Micro- and Nano-Materials [J]. Progress in Chemistry, 2012, 24(12): 2299-2311.
[3] Cai Xiaozhou, Jiang Lang, Dong Huanli, Li Jingze*, Hu Wenping* . Organic Circuits and Their Basic Elements [J]. Progress in Chemistry, 2012, 24(12): 2431-2442.
[4] Liu Jie Jiang Lang Hu Wenping. The Application of Anthracene and Its Derivatives in Organic Field-Effect Transistors [J]. Progress in Chemistry, 2009, 21(12): 2568-2577.
[5] Chen Zhenyu Ye Tengling Ma dongge. Measurement Methods for Charge Carrier Mobility in Organic Semiconductors [J]. Progress in Chemistry, 2009, 21(05): 940-947.
[6] . Biogeochemical of Arsenic [J]. Progress in Chemistry, 2009, 21(0203): 458-466.
[7] Li Rongjin1, Li Hongxiang1,Zhou Xinran2,Hu Wenping 1*. Polymer Field-Effect Transistors:Materials and Devices [J]. Progress in Chemistry, 2007, 19(0203): 325-336.
[8] Qingxin Tang,Rongjin Li,Haifeng Wang,Hongxiang Li,Wenping Hu**. Organic Transistors of Small Molecular Weight Materials [J]. Progress in Chemistry, 2006, 18(11): 1538-1553.
[9] Ping Li 1,2,4 ,,Jianlin Zhang3 ,,Aiqin Wang1*. Progress in Analytical Chemistry of Chitosan and Its Derivatives [J]. Progress in Chemistry, 2006, 18(04): 467-473.
[10] Yaling Liu,Hongxiang Li,Wenping Hu*,Daoben Zhu* . Organic Single-Crystal Field-Effect Transistors [J]. Progress in Chemistry, 2006, 18(0203): 189-199.
[11] Xu Feng,Wang Hailong,Guan Yafeng**. Progress in Ion Mobility Spectrometry [J]. Progress in Chemistry, 2005, 17(03): 514-522.