中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (05): 735-743 DOI: 10.7536/PC120817 Previous Articles   Next Articles

• Review •

Synthesis and Structure Control of Hierarchical Ordered Porous Carbons via Soft-Templating Methods

Wu You, Zhao Xin, Zhao Ying, Liu Shouxin*   

  1. Key Laboratory of Biological Materials of Ministry of Education, Northeast Forestry University, Harbin 150040, China
  • Received: Revised: Online: Published:
PDF ( 1130 ) Cited
Export

EndNote

Ris

BibTeX

Hierarchical ordered porous carbon (HOPC) which include macro-mesopore, micro-mesopore, meso-mesopore and macro-meso-micropore carbons, exhibited great potential in the fields of catalysis, adsorption, energy storage and electrochemistry due to the advantages of combined multiple porous structure. By now, various preparation methods for hierarchical ordered porous carbon have been reported. Among them, templating method which could control pore structure and adjust pore dimension is the most effective. For templating method, soft-templating method was simple, timesaving, low cost and less pollution and has been widely employed in recent years. Soft-templating preparation method for hierarchical ordered porous carbon, especially evaporation induced self-assembly (EISA) method and structure control strategy are reviewed. Block copolymer is a kind of soft-template which plays a role as pore-forming. In this paper, interaction of block copolymers with carbon precursors for the production of hierarchical porous structure is especially reviewed. Factors influencing the pore structure which include dual template, post activation, carbon source and molecular structure of soft template are summarized. Strategy for the control preparation of hierarchical ordered porous carbon via soft templates is proposed. Contents
1 Introduction
2 Type of hierarchical ordered porous carbons
2.1 Macro-mesoporous carbon
2.2 Micro-mesoporous carbon
2.3 Meso-mesoporous carbon
2.4 Others
3 Structure control of hierarchical ordered porous carbons
3.1 Influence of soft-templating agents
3.2 Influence of carbon sources
3.3 Influence of temperature
4 Outlook

CLC Number: 

[1] Kyotani T. Carbon, 2000, 38(2): 269-286
[2] Wu Z X, Zhao D Y. Chem. Commun., 2011, 47(12): 3332-3338
[3] Ariga K, Vinu A, Miyahara M, Hill J P, Mori T. J. Am. Chem. Soc., 2007, 129(36): 11022-11023
[4] Gao P, Wang A Q, Wang X D, Zhang T. Chem. Mater., 2008, 20(5): 1881-1888
[5] Lin M L, Huang C C, Lo M Y, Mou C Y. J. Phys. Chem. C, 2008, 112(3): 867-873
[6] Zhou J, Yuan X, Xing W, Si W J, Zhuo S P. New Carbon Materials, 2010, 25(5): 370-375
[7] Liang C D, Dudney N J, Howe J Y. Chem. Mater., 2009, 21(19): 4724-4730
[8] Zhao X C, Wang A Q, Yan J W, Sun G Q, Sun L X, Zhang T. Chem. Mater., 2010, 22(19): 5463-5473
[9] Hu Z, Srinivasan M P, Ni Y. Adv. Mater., 2000, 12(17): 62-65
[10] Ahmadpour A, Do D D. Carbon, 1996, 344(4): 471-479
[11] Yang T, Lua A C. J. Colloid Interface Sci., 2003, 267(2): 408-417
[12] Patel N, Okabe K, Oya A. Carbon, 2002, 40(3): 315-320
[13] Oya A, Kasahara N. Carbon, 2000, 38(8): 1141-1144
[14] Pekala R W. J. Mater. Sci., 1989, 24(9): 3221-3227
[15] Pekala R W, Alviso C T, Kong F M, Hulsey S S. J. Non-Cryst. Solids, 1992, 145: 90-98
[16] Tamai H, Kakii T, Hirota Y, Kummamoto T, Yasuda H. Chem. Mater., 1996, 8(2): 454-462
[17] Oya A, Yoshida S, Alcaniz-Monge J, Linares-Soleno A. Carbon, 1995, 33(8): 1085-1090
[18] Knox J H, Kaur B, Millward G R. J. Chromatogr., 1986, 352(21): 3-25
[19] Liang C D, Li Z J, Dai S. Angew. Chem. Int. Ed., 2008, 47(20): 3696-3717
[20] Yuan Z Y, Su B L. J. Mater. Chem., 2006, 16(7): 663-667
[21] Tiemann M. Chem. Mater., 2008, 20(3): 961-971
[22] Huczko A. Appl. Phys. A, 2000, 70(4): 365-376
[23] Lu A H, Smatt J H, Linden M. Adv. Funct. Mater., 2005, 15(5): 865-871
[24] Deng Y H, Liu C, Yu T, Liu F, Zhang F Q, Wan Y, Zhang L, Wang C H, Tu B, Webley P A, Wang H T, Zhao D Y. Chem. Mater., 2007, 19(13): 3271-3277
[25] Zhao Y, Zheng M B, Cao J M, Ke X F, Liu J S, Chen Y P, Tao J. Materials Letters, 2008, 62(3): 548-551
[26] Wang Z Y, Kiesel E R, Stein A. J. Mater. Chem., 2008, 18(19): 2194-2200
[27] 周颖(Zhou Y), 王志超(Wang Z C), 王春雷(Wang C L), 王六平(Wang L P), 许钦一(Xu Q Y), 邱介山(Qiu J S). 无机材料学报(Journal of Inorganic Materials), 2011, 26(2): 145-148
[28] Huang C H, Doong R A, Gong D, Zhao D Y. Carbon, 2011, 49(9): 3055-3064
[29] Xue C F, Tu B, Zhao D Y. Nano Res., 2009, 2(3): 242-253
[30] Huang Y, Cai H Q, Feng D, Gu D, Deng Y H, Tu B, Wang H T, Webley P A, Zhao D Y. Chem. Commun., 2008, (23): 2641-2643
[31] Xu J M, Wang A Q, Zhang T. Carbon, 2012, 50(3): 1807-1816
[32] Enterría M, Suárez-García F, Martínez-Alonso A, Tascón J M D. Microporous and Mesoporous Materials, 2012, 151: 390-396
[33] Xia K S, Gao Q M, Jiang J H, Hu J. Carbon, 2008, 46(13): 1718-1726
[34] Gorka J, Zawislak A, Choma J, Jaroniec M. Carbon, 2008, 46(8): 1159-1174
[35] Choi M, Ryoo R. J. Mater. Chem., 2007, 17(39): 4204-4209
[36] Yan Y, Wei J, Zhang F G, Meng Y, Tu B, Zhao D Y. Microporous and Mesoporous Materials, 2008, 113: 305-315.
[37] Gorka J, Jaroniec M. Carbon, 2011, 49(1): 154-160
[38] Choma J, Gorka J, Jaroniec M, Zawislak A. Top Catal., 2010, 53(3/4): 283-290
[39] Xing W, Huang C C, Zhou S P, Yuan X, Wang G Q, Hulicova-Jurcakova D, Yan Z F, Lu G Q. Carbon, 2009, 47(7): 1715-1722
[40] Xing W, Zhuo S P, Gao X L. Materials Letters, 2009, 63(15): 1311-1313
[41] Wang G Q, Huang C C, Xing W, Zhuo S P. Electrochimica Acta, 2011, 56: 5459-5463
[42] Wang X, Lee J S, Tsouris C, Depaoli D W, Dai S. J. Mater. Chem., 2010, 20(22): 4602-4608
[43] Liu M X, Gang L H, Tian C, Zhu J C, Xu Z J, Hao Z X, Chen L W. Chinese Chemical Letters., 2009, 20(1): 123-126
[44] Li Q, Jiang R R, Dou Y Q, Wu Z G, Huang T, Feng D, Yang J P, Yu A S, Zhao D Y. Carbon, 2011, 49(4): 1248-1257
[45] Liang Y R, Wu D C, Fu R W. Langmuir, 2009, 25(14): 7783-7785
[46] Huang Y, Cai H Q, Yu T, Zhang F Q, Zhang F, Meng Y, Gu D, Wan Y, Sun X L, Tu B, Zhao D Y. Angew. Chem. Int. Ed., 2007, 46(7): 1089 -1093
[47] Huang Y, Cai H Q, Yu T, Sun X L, Tu B, Zhao D Y. Chem. Asian J., 2007, 2(10): 1282-1289
[48] Liu R, Shi Y F, Wan Y, Meng Y, Zhang F Q, Gu D, Chen Z X, Tu B, Zhao D Y. J. Am. Chem. Soc., 2006, 128(35): 11652-11662
[49] Lee J, Kim J, Lee Y, Yoon S, Oh S M, Hyeon T. Chem. Mater., 2004, 16(17): 3323-3330
[50] Jaroniec M, Gorka J, Choma J, Zawislak A. Carbon, 2009, 47(13): 3034-3040
[51] Meng Y, Gu D, Zhang F Q, Shi Y F, Yang H F, Tu B, Yu C, Zhao D Y. Angew. Chem. Int. Ed., 2005, 44(7): 7053-7059
[52] Yu C Z, Fan J, Tian B Z, Stucky G D, Zhao D Y. J. Phys. Chem. B, 2003, 107(48): 13368-13375
[53] Meng Y, Gu D, Zhang F Q, Shi Y F, Cheng L, Feng D, Wu Z X, Chen Z X, Wan Y, Stein A, Zhao D Y. Chem. Mater., 2006, 18(18): 4447-4464
[54] Deng Y H, Yu T, Wan Y, Shi Y F, Meng Y, Gu D, Zhang L J, Huang Y, Liu C, Wu X J, Zhao D Y. J. Am. Chem. Soc., 2007, 129(6): 1690-1697
[55] Liang C D, Hong K L, Guiochon G A, Mays J W, Dai S. Angew. Chem. Int. Ed., 2004, 43(43): 5785-5789
[56] Kresge C T, Leonowiez M E, Roth W J, Vartuli J C, Beek J S. Nature, 1992, 359: 710-712
[57] Beek J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Sehmitt K D, Chu C T W, Olson D H, Sheppard E W, Mecullen S B, Higgins J B, Sehlenker J L. J. Am. Chem. Soc., 1992, 114(27): 10834-10843
[58] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredriekson G H, Chmelka B F, Stueky G D. Science, 1998, 279(5350): 548-552
[59] Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stueky G D. J. Am. Chem. Soc., 1998, 120(24): 6024-6036
[60] Wan Y, Zhao D Y. Chem. Rev., 2007, 107(70): 2821-2860
[61] Zhang F Q, Meng Y, Gu D, Yan Y, Chen Z X, Tu B, Zhao D Y. Chem. Mater., 2006, 18(22): 5279-5288
[62] Yan Y, Zhang F Q, Meng Y, Tu B, Zhao D Y. Chem. Commun., 2007, (27): 2867-2869
[63] Chu P P, Wu H D. Polymer, 2000, 41(1): 101-109
[64] Liang C D, Dai S. J. Am. Chem. Soc., 2006, 128(16): 5316-5317
[65] Tanaka S, Nishiyama N, Egashira Y, Ueyama K. Chem. Commun., 2005, 16: 2125-2127
[66] Mayes R T, Tsouris T, Kiggans J O Jr, Mahurin S M, DePaoli D W, Dai S. J. Mater. Chem., 2010, 20(39): 8674-8678
[67] Wang R, Li W, Liu S X. J. Mater. Sci., 2012, 47: 1977-1984
[68] Xie M J, Dong H H, Zhang D D, Guo X F, Ding W P. Carbon, 2011, 49(7): 2459-2464
[69] Sebenik A, Osredkar U, Vizovisek I. Polymer, 1981, 22(6): 804-806
[70] Christiansen A W. J. Appl. Poly. Sci., 2000, 75(14): 1760-1768
[71] Górka J, Fenning C, Jaroniec M. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2009, 352(1/3): 113-117
[72] Wan Y, Yang H F, Zhao D Y. Acc. Chem. Res., 2006, 39(7): 423-432

[1] Anrui Zhang, Yuejie Ai. Structure Control of Covalent Organic Frameworks(COFs) and Their Applications in Environmental Chemistry [J]. Progress in Chemistry, 2020, 32(10): 1564-1581.
[2] Jiao Chengpeng, Huang Zili, Zhang Haijun, Zhang Shaowei. Bimetallic Nanocatalysts Synthesized via Galvanic Replacement Reaction [J]. Progress in Chemistry, 2015, 27(5): 472-481.
[3] . Functionalization and Structure Control of Carbon Nanotubes with Polymers: Polymers-Grafted Carbon Nanotubes [J]. Progress in Chemistry, 2010, 22(04): 684-695.
[4]

Fan Xi'an|Guan Jianguo**|Wang Wei|Wang Yilong|Tong Guoxiu|Mou Fangzhi

. Preparation, Microstructure Control and Magnetic Properties of 1D Ferromagnetic Metal Nanomaterials [J]. Progress in Chemistry, 2009, 21(01): 143-151.