中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (06): 900-914 DOI: 10.7536/PC120804 Previous Articles   Next Articles

• Review •

Different Catalyst Systems for Baeyer-Villiger Reaction

Yan Fanyong, Li Chuying, Liang Xiaole, Dai Linfeng, Wang Meng, Chen Li*   

  1. State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387, China
  • Received: Revised: Online: Published:
PDF ( 1668 ) Cited
Export

EndNote

Ris

BibTeX

Baeyer-Villiger reaction can take control of the stereochemical structure of the product. It is significant in organic synthesis for the conversion of functional groups and ring expansion.The oxide product of Baeyer-Villiger reaction can be widely used in the synthesis of many natural products and pharmaceutical intermediates, as well as some polymer material monomer. With the further research on Baeyer-Villiger reaction, the types of catalysts are increasing continuously, including homogeneous catalysts, heterogeneous catalysts, biocatalysts. Homogeneous catalyst often brings excellent conversion rate and good selectivity, but has lower recycling rate than the heterogeneous catalyst. And the environmentally-friendly biocatalysts are still the focus of the study. In this review, we provide an overview of the latest achievements in Baeyer-Villiger reaction from the aspects of homogeneous catalysis, heterogeneous catalysis and biocatalysis, especially with an emphasis on the clarification of the relationship between catalysts and substrates in different catalyst systems. The mechanisms of the reaction are summarized in detail in the review. And the future advance of Baeyer-Villiger reaction is prospected. Contents
1 Introduction
2 Homogeneous catalysis
2.1 Transition metal complexe catalysts
2.2 Acid catalysts
3 Heterogeneous catalysis
3.1 Liquid-liquid two-phase catalysis
3.2 Solid-liquid two-phase catalysis
4 Biocatalysis
4.1 Lipase
4.2 Monooxygenase (BVMOs)
5 Conclusion and outlook

CLC Number: 

[1] Baeyer A, Villiger V. Ber. Dtsch. Chem. Ges., 1899, 32: 3625-3633
[2] Jiménez-Sanchidrin C, Ruiz J R. Tetrahedron, 2008, 64: 2011-2026
[3] Michelin R A, Sgarbossa P, Scarso A, Strukul G. Coordin. Chem. Rev., 2010, 254: 646-660
[4] Grein F, Chen A C, Edwards D, Crudden C M. J. Org. Chem., 2006, 71: 861-872
[5] 李秀荣(Li X R), 毛建新(Mao J X), 徐羽展(Xu Y Z), 项波卡(Xiang B K), 郑小明(Zheng X M). 石油化工(Petrochemical Technology), 2004, 33: 684-689
[6] Balke K, Kadow M, Mallin H, Sa S, Bornscheuer U T. Org. Biomol. Chem., 2012, 10: 6249-6265
[7] Riebel A, Dudek H M, de Gonzalo G, Stepniak P, Rychlewski L, Fraaije M W. Appl. Microbiol. Biotechnol., 2012, 95: 1479-1489
[8] Rafelt J S, Clark J H. Catal. Today, 2000, 57: 33-44
[9] Rocha G M S R O, Santos T M, Bispo C S S. Catal. Lett., 2011, 141: 100-110
[10] Pazmino D E T, Dudek H M, Fraaije M W. Chem. Biol., 2010, 14: 138-144
[11] Fink M J, Rudroff F, Mihovilovic M D. Bioorg. Med. Chem. Lett., 2011, 21: 6135-6138
[12] 冯小明(Feng X M), 彭云贵(Peng Y G), 蒋耀忠(Jiang Y Z). 合成化学(Chinese Journal of Synthetic Chemistry), 1999, 7: 374-381
[13] Ten Brink G J, Arends I W C E, Sheldon R A. Chem. Rev., 2004, 104: 4105-4123
[14] 牛棱渊(Niu L Y). 西北师范大学硕士论文(Master Dissertation of Northwest Normal University), 2011
[15] 张萍(Zhang P). 南京工业大学博士学位论文(Doctoral Dissertation of Nanjing University of Technology), 2006
[16] Leisch H, Morley K, Lau P C K. Chem. Rev., 2011, 111: 4165-4222
[17] Cole-Hamilton D J. Science, 2003, 299: 1702-1706
[18] Jacobson S E, Tang R, Mares F. J. Chem. Soc. Chem. Commun., 1978, 888-889
[19] Alegria E C B A, Martins L M D R S, Kirillova M V, Pombeiro A J. Appl. Catal. A: Gen., 2012, 443: 27-32
[20] Zhou L, Liu X H, Ji J, Zhang Y H, Hu X L, Lin L L, Feng X M. J. Am. Chem. Soc., 2012, 134: 17023-17026
[21] Brunetta A, Sgarbossa P, Strukul G. Catal. Today, 2005, 99: 227-232
[22] Rocha G M S R O, Santos T M, Bispo C S S. Catal. Lett., 2011, 141: 100-110
[23] Watanabe A, Uchida T, Ito K, Katsuki T. Tetrahedron Lett., 2002, 43: 4481-4485
[24] Malkov A V, Friscourt F, Bell M, Swarbrick M E, Pavel K, Kocovsk P. J. Org. Chem., 2008, 73: 3996-4003
[25] Petersen K S, Stoltz B M. Tetrahedron, 2011, 67: 4352-4357
[26] Xu S M, Wang Z, Zhang X M, Ding K L. Eur. J. Org. Chem., 2011, 110-116
[27] Reyes L, Diaz-Sanchez C, Iuga C. J. Phys. Chem. A, 2012, 116: 7712-7717
[28] Bach R D. J. Org. Chem., 2012, 77: 6801-6815
[29] Hunt K W, Grieco P A. Org. Lett., 2000, 2: 1717-1719
[30] Kosaka N, Hiyama T, Nozaki K. Macromolecules, 2004, 37: 4484-4487
[31] Ichikawa H, Usami Y, Arimoto M. Tetrahedron Lett., 2005, 46: 8665-8668
[32] Zarraga M, Salas V, Miranda A, Arroyo P, Paz C. Tetrahedron, 2008, 19: 796-799
[33] Mariana M A, Morzyckib J W, Iglesias-Arteaga M A. Steroids, 2011, 76: 317-323
[34] Uyanik M, Nakashima D, Ishihara K. Angew. Chem. Int. Edit., 2012, 51: 9093-9096
[35] Sasakura N, Nakano K, Ichikawa Y, Kotsuki H. RSC Adv., 2012, 2: 6135-6139
[36] Steffen R A, Teixeira S, Sepulveda J, Rinaldi R, Schuchardt U. J. Mol. Catal. A: Chem., 2008, 287: 41-44
[37] 雷自强(Lei Z Q), 何海龙(He H L), 杨志旺(Yang Z W). 西北师范大学学报(自然科学版)(Journal of Northwest Normal University(Natural Science)), 2009, 5: 84-87
[38] Andrade L H, Pedrozo E C, Leite H G, Brondani P B. J. Mol. Catal. B: Enzym., 2011, 73: 63-66
[39] Ten Brink G J, Vis J M, Arends I W C E, Sheldon R A. J. Org. Chem., 2001, 66: 2429-2433
[40] Betzemeier B, Lhermitte F, Knochel P. Synlett., 1999, 489-491
[41] Mathivet T, Monflier E, Castanet Y, Mortreux A, Couturier J L. Tetrahedron Lett., 1998, 39: 9411-9414
[42] Hao X H, Yamazaki O, Yoshida A, Nishikido J. Green Chem., 2003, 5: 524-528
[43] Aida L V, Farlán T A, Consuelo M C. J. Mol. Catal. A: Chem., 2002, 185: 269-277
[44] Palomeque J, Figueras F, Gelbard G. Appl. Catal. A: Gen., 2006, 300: 100-108
[45] Sgarbossa P, Scarso A, Pizzo E, Sbovata S M, Tassan A, Michelin R A, Strukul G. J. Mol. Catal. A: Chem., 2007, 261: 202-206
[46] Sgarbossa P, Scarso A, Michelin R A, Strukul G. Organometallics, 2007, 26: 2714-2719
[47] Greggio G, Sgarbossa P, Scarso A, Michelin R A, Strukul G. Inorg. Chim. Acta, 2008, 361: 3230-3236
[48] Venturello C, Alneri E, Ricci M. J. Org. Chem., 1983, 48: 3831- 3833
[49] Zarrabi S, Mahmoodi N O, Tabatabaeian K, Zanjanchi M A. Chin. Chem. Lett., 2009, 20: 1400-1404
[50] Cavarzan A, Scarso A, Sgarbossa P, Michelin R A, Strukul G. ChemCatChem, 2010, 2: 1296-1302
[51] Baj S, Chrobok A, Siewniak A. Appl. Catal. A: Gen., 2011, 395: 49-52
[52] Bhaurnik A, Kumar P, Kumar R. Catal. Lett., 1996, 40: 47-50
[53] Corma A, Nemeth L T, Renz M, Valencia S. Nature, 2001, 412: 423-425
[54] Corma A, Fornés V, Iborra S, Mifsud M, Renz M. J. Catal., 2004, 221: 67-76
[55] Boronat M, Concepción P, Corma A, Navarro M T, Renz M, Valencia S. Phys. Chem. Chem. Phys., 2009, 11: 2876-2884
[56] Boronat M, Concepción P, Corma A, Renz M. Catal. Today, 2007, 121: 39-44
[57] Boronat M, Concepción P, Corma A, Renz M, Valencia S. J. Catal., 2005, 234: 111-118
[58] Dutta B, Jana S, Bhunia S, Honda H, Koner S. Appl. Catal. A: Gen., 2010, 382: 90-98
[59] Corma A, Navarro M T, Ncmcth L, Michael R. Chem. Commun., 2001, 2190-2191
[60] Corma A, Navarro M T, Renz M. J. Catal., 2003, 219: 242-246
[61] Nowak I, Feliczak A, Nekoksová I, [AKCˇ]ejka J. Appl. Catal. A: Gen., 2007, 321: 40-48
[62] 李圭(Li G), 钟玲(Zhong L), 袁霞(Yuan X), 吴剑(Wu J), 罗和安(Luo H A). 化学反应工程与工艺(Chemical Reaction Engineering and Technology), 2010, 26: 162-166
[63] Subramanian H S, Nettleton E G, Budhi S, Koodali R T. J. Mol. Catal. A: Chem., 2010, 330: 66-72
[64] 杨志旺(Yang Z W), 马振宏(Ma Z H), 牛棱渊(Niu L Y), 马国富(Ma G F), 马恒昌(Ma H C), 雷自强(Lei Z Q). 催化学报(Chinese Journal of Catalysis), 2011, 32: 463-467
[65] Wang S H, Wang Y B, Dai Y M, Jehng J M. Appl. Catal. A: Gen., 2012, 439: 135-141
[66] 刘媛(Liu Y), 陈长林(Chen C L), 徐南平(Xu N P). 催化学报(Chinese Journal of Catalysis), 2004, 25: 801-804
[67] Pillai U R, Sahle-Demessie E. J. Mol. Catal. A: Chem., 2003, 191: 93-100
[68] Jiménez-Sanchidrián C, Hidalgo J M, Llamas R, Ruiz J R. Appl. Catal. A: Gen., 2006, 312: 86-94
[69] Llamas R, Jimenez-Sanchidrin C, Ruiz J R. Tetrahedron, 2007, 63: 1435-1439
[70] Liu H B, Chen T H, Chang D Y, Chen D, He H P, Frost R L. J. Mol. Catal. A: Chem., 2012, 364: 304-310
[71] Chen T H, Liu H B, Li J H, Chen D, Chang D Y, Kong D J, Ray L F. Chem. Eng. J., 2011, 166: 1017-1021
[72] Lei Z Q, Zhang Q H, Luo J J, He X Y. Tetrahedron Lett., 2005, 46: 3505-3508
[73] Lei Z Q, Zhang Q H, Wang R M. J. Organomet. Chem., 2006, 691: 5767-5773
[74] Praus P, Veteka M, Pospíil M. Mol. Simulat., 2011, 37: 964-974
[75] Lei Z Q, Ma G F, Jia C G. Catal. Commun., 2007, 8: 305-309
[76] Belaroui L S, Sorokin A B, Figueras F, Bengueddach A. C. R. Chim., 2010, 13: 466-472
[77] Olah G A, Yamato T, Iyer P S, Trivedi N J, Singh B P, Prakash G K S. Mater. Chem. Phys., 1987, 17: 21-30
[78] Zhang G H, Wen S X, Lei Z Q. React. Funct. Polym., 2006, 66: 1278-1283
[79] Li C L, Yang Z W, Wu S, Lei Z Q. React. Funct. Polym., 2007, 67: 53-59
[80] Li C L, Wang J Q, Yang Z W, Hu Z A, Lei Z Q. Catal. Commun., 2007, 8: 1202-1208
[81] Tomalia D A, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P. Polym. J., 1985, 17: 117-132
[82] Li C L, Lei Z Q, Ma H C, Wu S, Sun Q S. J. Disper. Sci. Technol., 2012, 33: 983-989
[83] Phillips A M F, Romo C. Eur. J. Org. Chem., 1999, 8: 1767-1770
[84] Jain K R, Kühn F E. J. Organomet. Chem., 2007, 692: 5532-5540
[85] Qiu C J, Zhang Y C, Gao Y, Zhao J Q. J. Organomet. Chem., 2009, 694: 3418-3424
[86] Bernini R, Coratti A, Fabrizi G, Goggiamani G. Tetrahedron Lett., 2003, 44: 8991-8994
[87] Cheng M J, Bischof S M, Nielsen R J, Goddard W A, Gunnoe B, Periana R A. Dalton Trans., 2012, 41: 3758-3763
[88] Raja R, Thomas J M, Sankar G. Chem. Commun., 1999, (6): 525-526
[89] Li J X, Le Y Y, Dai W L, Li H X, Fan K N. Catal. Commun., 2008, 9: 1334-1341
[90] Llamas R, Sanchidrián C J, Ruiz J R. Appl. Catal. B: Environ., 2007, 72: 18-25
[91] 李静霞(Li J X), 黄靓(Huang J), 戴维林(Dai W L). Acta Chim. Sinica, 2008, 66: 5-9
[92] 杜金婷(Du J T), 吕效平(Lv X P), 韩萍芳(Han P F), 姜文旭(Jiang W X). 石油化工(Petrochemical Technology), 2009, 38: 1180-1185
[93] Paul M, Pal N, Mondal J, Sasidharan M, Bhaumik A. Chem. Eng. Sci., 2011, 71: 564-572
[94] Gonzlez-Nuez M E, Mello R, Olmos A, Asensio G. J. Org. Chem., 2006, 71: 6432-6436
[95] Chrobok A, Baj S, Pudo W, Jarzebski A. Appl. Catal. A: Gen., 2009, 366: 22-28
[96] 杨志旺(Yang Z W), 陈琴(Chen Q), 马国富(Ma G F), 何海龙(He H L), 雷自强(Lei Z Q). 西北师范大学学报(自然科学版)(Journal of Northwest Normal University(Natural Science)), 2010, 46: 73-77
[97] Yang Z W, Niu L Y, Jia X J, Kang Q X, Ma Z H, Lei Z Q. Catal. Commun., 2011, 12: 798-802
[98] Lei Z Q, Ma G F, Wei L L, Yang Q L, Su B T. J. Catal. Lett., 2008, 124: 330-333
[99] Mahmoodi N O, Heirati S Z D, Ekhlasi-Kazaj K. J. Iran. Chem. Soc., 2012, 9: 521-528
[100] Jeong E Y, Ansari M B, Park S E. ACS Catal., 2011, 1: 855-863
[101] Pazmio D E T, Dudek H M, Fraaije M W. Curr. Opin. Chem. Biol., 2010, 14: 138-144
[102] Secundo F, Fiala S, Marco W F, Gonzalo G, Massimiliano M L, Francesca Z, Gianluca O. Biotechnol. Bioeng., 2011, 108: 491-499
[103] Rioz-Maritnez A, Cuetos A, Rodrguez C, de Gonzalo G, Lavandera I, Fraaije M W, Gotor V. Angew. Chem. Int. Ed., 2011, 50: 8387-8390
[104] Rios M Y, Salazar E, Olivo H F. Mol. Catal. B: Enzym., 2008, 54: 61-66
[105] Kotlewska A J, van Rantwijk F, Sheldon R A, Arends I W C E. Green Chem., 2011, 13: 2154-2160
[106] Ratu Ds' B, Gadkowski W, Wawrzenczyk C. Enzym. Microb. Technol., 2009, 45: 156-163
[107] Mihovilovic M D, Rudroff F, Grtzl B, Kapitán P, Snajdrova R, Rydz J, Mach R. Angew. Chem. Int. Ed., 2005, 44: 3609-3613
[108] Geitner K, Kirschner A, Rehdorf J, Schmidt M, Mihovilovic M D, Bornscheuer U T. Tetrahedron-Asymmetry, 2007, 18: 892-895
[109] Jiang B, Luo J, Huang H, Chen Y, Li Z Y. Chin. J. Org. Chem., 2005, 25: 1542-1547
[110] Reetz M T, Wu S. J. Am. Chem. Soc., 2009, 131: 15424-15432
[111] Beneventi E, Ottolina G, Carrea G, Panzeri W, Fronza G, Lau P C K. J. Mol. Catal. B: Enzym., 2009, 58: 164-168
[112] Fink M J, Fischer T C, Rudroff F, Dudek H, Fraaije M W, Mihovilovic M D. J. Mol. Catal. B: Enzym., 2011, 73: 9-16
[113] Piersanti G, Retini M, Espartero J L, Madrona A, Zappia G. Tetrahedron Lett., 2011, 52: 4938-4940
[114] Jensen C N, Cartwright J, Ward J, Hart S, Turkenburg J P, Ali S T, Allen M J, Grogan G. ChemBioChem, 2012, 13: 872-878
[115] Willetts A, Joint I, Gilbert J A, Trimble W, Mühling M. Microb. Biotechnol., 2012, 5: 549-559
[116] Allen M J, Tait K, Mühling M, Weynberg K, Bradley C, Trivedi U, Gharbi K, Nissimov J, Mavromatis K, Jensen C N, Grogan G, Ali S T. J. Bacteriol., 2012, 194: 4753-4754
[117] Meeuwissen S A, Rioz-Martínez A, Gonzalo G, Fraaije M W, Gotor V, van Hest J C M. J. Mater. Chem., 2011, 21: 18923-18926
[118] Cuetos A, Ana R M, Valenzuela M L, Lavandera I, Gonzalo G, Carriedo G A, Gotor V. J. Mol. Catal. B: Enzym., 2012, 74: 178-183
[119] Rodríguez C, Gonzalo G, Gotor V. J. Mol. Catal. B: Enzym., 2012, 74: 138-143
[120] Zhang Z G, Parra L P, Reetz M T. Chem. Eur. J., 2012, 18: 10160-10172
[121] Bucko M, Schenkmayerová A, Gemeiner P, Vikartovská A, Mihovilovic M D, Lacík I. Enzyme Microb. Technol., 2011, 49: 284-288
[122] Schenkmayerova A, Bu[AKcˇ]ko M, Gemeiner P, Chorvát D, Lacík L. Biotechnol. Lett., 2012, 34: 309-314
[123] Polyak I, Reetz M T, Thiel W. J. Am. Chem. Soc., 2012, 134: 2732-2741

[1] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[2] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[3] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[4] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[5] Wenqing Yang, Dale Xie, Jun Cheng, Weike Tang, Ruobing Wang, Yisi Feng. Supported BINAP-M Catalysts [J]. Progress in Chemistry, 2021, 33(10): 1706-1720.
[6] Meirong Kang, Fuxiang Jin, Zhen Li, Heyuan Song, Jing Chen. Research and Application of Supported Ionic Liquids [J]. Progress in Chemistry, 2020, 32(9): 1274-1293.
[7] Chen Hou, Wenqiang Chen, Linhui Fu, Sufeng Zhang, Chen Liang. Covalent Organic Frameworks(COFs) Materials in Enzyme Immobilization and Mimic Enzymes [J]. Progress in Chemistry, 2020, 32(7): 895-905.
[8] Xinzhi Wang, Hongli Wang, Feng Shi. Alcohol Amination for N-Alkyl Amine Synthesis with Heterogeneous Catalysts [J]. Progress in Chemistry, 2020, 32(2/3): 162-178.
[9] Xingwang Lan, Guoyi Bai. Covalent Organic Framework Catalytic Materials: CO2 Conversion and Utilization [J]. Progress in Chemistry, 2020, 32(10): 1482-1493.
[10] Jiawei Li, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Chemical Fixation of Carbon Dioxide [J]. Progress in Chemistry, 2019, 31(10): 1350-1361.
[11] Wenqiao Liu, Zhen Li, Chungu Xia. Preparation and Application of Acidic Ionic Liquid Hybrid Solid Catalytic Materials [J]. Progress in Chemistry, 2018, 30(8): 1143-1160.
[12] Jiqian Wang*, Hongyu Yan, Jie Li, Liyan Zhang, Yurong Zhao, Hai Xu*. Artificial Metalloenzymes Based on Peptide Self-Assembly [J]. Progress in Chemistry, 2018, 30(8): 1121-1132.
[13] Dongya Bai, Junyao He, Bin Ouyang, Jin Huang, Pu Wang. Biocatalytic Asymmetric Synthesis of Chiral Aryl Alcohols [J]. Progress in Chemistry, 2017, 29(5): 491-501.
[14] Sun Jia, Wang Pu, Zhang Pengpeng, Huang Jin. Application of Glycerol in Microbial Biosynthesis and Biocatalysis [J]. Progress in Chemistry, 2016, 28(9): 1426-1434.
[15] Fu Xianbiao, Yu Guipeng. Covalent Organic Frameworks Catalysts [J]. Progress in Chemistry, 2016, 28(7): 1006-1015.