中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (04): 435-445 DOI: 10.7536/PC120801 Previous Articles   Next Articles

Special Issue: 酶化学

Paradigm Shift in Bioinorganic Chemistry: Enzymatic Polycondensation Reaction of Silica in Siliceous Sponges

Wang Xiaohong*1,2, Gan Lu2, Heinz C. Schröder2, Werner E.G. M黮ler*2   

  1. 1. National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing 100037, China;
    2. ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
  • Received: Revised: Online: Published:
PDF ( 818 ) Cited
Export

EndNote

Ris

BibTeX

The discovery of silicatein caused a paradigm shift, since it is the first enzyme which catalyzes the synthesis of a polymeric inorganic molecule from inorganic monomers. Molecular biological, biochemical and cell-biological data showed that the synthesis of siliceous spicules in both demosponges and hexactinellids is enzymatically driven via silicatein. This enzyme exists both intra-spicularly and in the extra-spicular space. It catalyzes the formation of bio-silica constituting the silica lamellae that are formed during the appositional (layer-by-layer) growth of the spicules. The extent of (bio-silica forming) activity of silicatein from the demosponge Suberites domuncula measured in vitro reflects the amount of bio-silica required for the formation of spicules in vivo. It is furthermore summarized that during growth and maturation of the spicules in demosponges a bio-fusion process occurs that results in an intra-spicular sintering of the silica lamellae to form compact silica rods. Finally we report that for the formation of the strong and stiff bio-silica skeleton of sponges a hardening process is required that is (presumably) driven by cell-membrane bound aquaporin channels which allow the removal of water, which is released during the bio-silica polycondensation reaction.

CLC Number: 

[1] Wöhler F. Ueber künstliche Bildung des Harnstoffs. Annalen der Physik und Chemie, 1828, 12: 253-256
[2] Pasteur L. Mémoire sur la fermentation appelée lactique. Mém. Soc. Sci. Agric. et Arts, 1857, 5: 13-26
[3] Hoppe-Seyler E F. Z. Physiol. Chem., 1877, 1: 1
[4] Spallanzani L, Senebier J. Experiences sur la Digestion de l’Homme et de Différentes especes d’Animaux. B. Geneve: Chirol, 1784
[5] Morse D E. Trends Biotechnol., 1999, 17: 230-232
[6] Krasko A, Gamulin V, Seack J, Steffen R, Schröder H C, Müller W E G. Molec. Marine Biol. & Biotechnol., 1997, 6: 296-307
[7] Müller W E G, Zahn R K. Gann Monograph on Cancer Research, 1976, 19: 51-62
[8] Xiao S, Yuan X, Knoll A H. Proc. Natl. Acad. Sci. U. S. A., 2000, 97: 13684-13689
[9] Walker G. Snowball Earth: The Story of the Great Global Catastrophe that Spawned Life as We Know it. New York: Crown Publishers, 2003
[10] Wang X H, Schröder H C, Müller W E G. Int. Rev. Cell Mol. Biol., 2009, 273: 69-115
[11] Gesner C. Historiae Animalium. Vol. 20. Zürich: Forer, 1558
[12] Iijma I. J. Coll. Sci. Imp. Univ. Tokyo, 1901, 18: 1-307
[13] Schulze F E. Hexactinellida. Wissenschaftliche Ergebnisse der Deutschen Tiefsee-Expedition auf dem Dampfer“Valdivia”1898-1899. Stuttgart: Fischer, 1904
[14] Gray J E. Ann. Philos., 1825, NS9: 431-432
[15] Wiens M, Wang X H, Natalio F, Schröder H C, Schloßmacher U, Wang S, Korzhev M, Geurtsen W, Müller W E G. Advanced Engin. Mat., 2010, 12: B438-B450
[16] Cha J N, Shimizu K, Zhou Y, Christianssen S C, Chmelka B F, Stucky G D, Morse D E. Proc. Natl. Acad. Sci. U. S. A., 1999, 96: 361-365
[17] Krasko A, Batel R, Schröder H C, Müller I M, Müller W E G. Eur. J. Biochem., 2000, 267: 4878-4887
[18] Wiens M, Bausen M, Natalio F, Link T, Schlossmacher U, Müller W E G. Biomaterials, 2009, 30: 1648-1656
[19] Shimizu K, Cha J, Stucky G D, Morse D E. Proc. Natl. Acad. Sci. U. S. A., 1998, 95: 6234-6238
[20] Müller W E G, Wang X H, Belikov S I, Tremel W, Schloßmacher U, Natoli A, Brandt D, Boreiko A, Tahir M N, Müller I M, Schröder H C. Formation of siliceous spicules in demosponges: example Suberites domuncula. In: Handbook of biomineralization, vol. 1. The biology of biominerals structure formation (Ed. Bäuerlein E). Weinheim: Wiley-VCH, 2007. 59-82
[21] Müller W E G, Wang X H, Kropf K, Boreiko A, Schloßmacher U, Brandt D, Schröder H C, Wiens M. Cell Tissue Res., 2008, 333: 339-351
[22] Müller W E G, Jochum K, Stoll B, Wang X H. Chem. Mater., 2008, 20: 4703-4711
[23] Wiens M, Schröder H C, Wang X H, Link T, Steindorf D, Müller W E G. Biochemistry, 2011, 50: 1981-1990
[24] Schloßmacher U, Wiens M, Schröder H C, Wang X H, Jochum K P, Müller W E G. Silintaphin-1: Interaction with Silicatein During Structure Guiding Biosilica Formation. FEBS J., 2011, 278: 1145-1155
[25] Imsiecke G, Steffen R, Custodio M, Borojevic R, Müller W E G. Formation of Spicules by Sclerocytes from the Freshwater Sponge Ephydatia muelleri in Short-term Cultures in vitro. In Vitro Cell. Dev. Biol., 1995, 31: 528-535
[26] Fairhead M, Johnson K A, Kowatz T, Mcmahon S A, Carter L G, Oke M, Liu H, Naismith J H, Van Der Walle C F. Chem. Commun., 2008, 21: 1765-1767
[27] Schröder H C, Wiens M, Schloßmacher U, Brandt D, Müller W E G. Silicon, 2012, 4: 33-38
[28] Croce G, Frache A, Milanesio M, Marchese L, Causà M, Viterbo D, Barbaglia A, Bolis V, Bavestrello G, Cerrano C, Benatti U, Pozzolini M, Giovine M, Amenitsch H. Biophys. J., 2004, 86: 526-534
[29] Flory P J, Semlyen J A. J. Am. Chem. Soc., 1966, 88: 3209-3212
[30] Wang X H, Schröder H C, Wiens M, Gan L, Tremel W, Müller W E G. in: Handbook of Marine Natural Products (Eds. Fattorusso E, Taglialatela-Scafati O, Gerwick W H). Berlin Heidelberg: Springer-Verlag, 2012. 1259-1284
[31] Müller W E G, Wang X H, Wiens M, Schloßmacher U, Jochum K P, Schröder H C. Biochim. Biophys. Acta, 2011, 1810: 713-726
[32] Müller W E G, Rothenberger M, Boreiko A, Tremel W, Reiber A, Schröder H C. Cell Tissue Res., 2005, 321: 285-297
[33] Liu K, Nagase H, Huang C G, Calamita G, Agre P. Biol. Cell, 2005, 98: 153-161
[34] Hoque A T, Yamano S, Liu X, Swaim W D, Goldsmith C M, Delporte C, Baum B J. J. Cell Physiol., 2002, 191: 336-341
[35] Brinker C J, Scherer G W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Boston: Academic Press, 1990
[36] Müller W E G, Schloßmacher U, Eckert C, Krasko A, Boreiko A, Ushijima H, Wolf S E, Tremel W, Schröder H C. Europ. J. Cell Biology, 2007, 86: 473-487
[37] Wang X H, Schröder H C, Brandt D, Wiens M, Lieberwirth I, Glasser G, Schloßmacher U, Wang S F, Müller W E G. ChemBioChem, 2011, 12: 2316-2324
[38] Wang X H, Schröder H C, Wang K, Kaandorp J A, Müller W E G. Soft Matter, 2012, 8: 9501-9518
[39] Vogtherr H. Eyn kunstreichs wahrhafftigs vnd wohlbegründtes urteil vnd Secret büchlein, der harns, von allerlei farben, zircklen, wolcken, zeychen vnnd vnderstand, vom geschmack, auch vunderscheid des alters vnnd der jungen, auch der Weiber, deß menschen vnd des vihs, auß den allerhochberümntesten der artzney lerern zusammen gezogen von gepraticiertet worden. Straßburg: Heinrich Vogt, 1538

[1] Mao Zongwan,An Yan,Ji Liangnian*. Consideration on the Development Strategy of Bioinorganic Chemistry in China [J]. Progress in Chemistry, 2004, 16(04): 660-.
[2] He Chengjiang,Wang Mei,Li Minna,Sun Licheng**. Advance in Chemical Mimic of Fe-Only Hydrogenase [J]. Progress in Chemistry, 2004, 16(02): 250-.
[3] Huang Kaixun**,Liu Qiong,Yang Xiangliang,Xu Huibi. Interactions between Small Inorganic Molecules and Biological Macromolecules in Cell [J]. Progress in Chemistry, 2004, 16(02): 308-.
[4] Zhang Zude,Hu Zhenbo,Liu Qingliang. The Applications of EXAFS Spectroscopy in Bioinorganic Chemistry [J]. Progress in Chemistry, 1996, 8(03): 213-.