中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC120757 Previous Articles   Next Articles

• Review •

Polymeric Biomaterials Containing Thiol/Disulfide Bonds

Li Chunge1, Zhao Shuang1, Li junjie2, Yin Yuji*1   

  1. 1. Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072;
    2. Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing 100850, China
  • Received: Revised: Online: Published:
PDF ( 2674 ) Cited
Export

EndNote

Ris

BibTeX

Polymeric biomaterials which contain thiol/disulfide bonds with a variety of good characteristics have the strong potential to be used as release carriers for drugs and genes. With the development of genetic engineering and tissue engineering, biodegradability of these materials has drawn much more attention of researchers and become the key factor limiting their applications as biomaterials. Disulfide bond remains stable in the extracellular environment while broken in the cytosolic reducing environment. In terms with this property, it is frequently used in the preparation of the carrier materials for the drug and gene delivery systems. The introduction of disulfide bonds to the materials provides an effective way to design or improve the biodegradability. In this review, we focused on the research progress and test methods of the thiol/ene photopolymerization reaction, Michael addition reaction and the redox reaction taking the hydrogels, polymer micells and vesicles as the typical examples. Different methods about the formation of thiol/ene disulfide bonds in the polymer were also presented. And the preparation and surface modification of three kinds of reduction-sensitive materials, including gene carriers, drug delivery vectors and small molecule drug carriers, were discussed in detail. The importance of the research on the polymeric biomaterials which contains thiol/disulfide bonds in the field of biomedical applications has been further emphasized. Contents
1 Introduction
2 Photopolymerization polymers
3 Michael addition polymers
4 Reduction-sensitive polymers
4.1 Gene carriers
4.2 Protein vectors
4.3 Small molecule drug carriers
5 Prospects

CLC Number: 

[1] Teng D Y, Wu Z M, Zhang X G, Wang Y X, Zheng C, Wang Z, Li C X. Polymer, 2010, 51: 639-646
[2] Jin R, Teixeira L S M, Krouwels A, Dijkstra P J, van Blitterswijk C A, Karperien M, Feijen J. Acta Biomaterialia, 2010, 6: 1968-1977
[3] Pritchard C D, O’Shea T M, Siegwart D J, Calo E, Anderson D G, Reynolds F M, Thomas J A, Slotkin J R, Woodard E J, Langer R. Biomaterials, 2011, 32: 587-597
[4] Lin C, Zhao P, Li F, Guo F F, Li Z Q, Wen X J. Materials Science and Engineering C, 2010, 3: 1236-1244
[5] Deshmukh M, Singh Y, Gunaseelan S, Gao D Y, Stein S, Sinko P J. Biomaterials, 2010, 31: 6675-6684
[6] Theiler S, Mela P, Diamantouros S E, Jockenhoevel S, Keul H, Möller M. Biotechnology and Bioengineering, 2011, 108: 694-703
[7] Kohane D S, Langer R. Chemical Science, 2010, 1: 441-446
[8] Lim Y M, Gwon H J, Choi J H, Shin J, Nho Y C. Macromolecular Research, 2010, 1: 29-34
[9] Song M M, Song W J, Bi H, Wang J, Wu W L, Sun J, Yu M. Biomaterials, 2010, 31: 1509-1517
[10] Wang R, Chen W, Meng F H, Cheng R, Deng C, Feijen J, Zhong Z Y. Macromolecules, 2011, 44: 6009-6016
[11] Kang H C, Kang H J, Bae Y H. Biomaterials, 2011, 32: 1193-1203
[12] Hoyle C E, Bowman C N. Angewandte Chemie International Edition, 2010, 49: 1540-1573
[13] Schreck K M, Leung D, Bowman C N. Macromolecules, 2011, 44: 7520-7529
[14] Niu G G, Song L, Zhang H B, Cui X P, Kashima M, Yang Z, Cao H, Wang G J, Zheng Y D, Zhu S Q, Yang H. Polymer Engineering and Science, 2010, 50: 174-182
[15] Fairbanks B D, Schwartz M P, Halevi A E, Nuttelman C R, Bowman C N, Anseth K S. Advanced Materials, 2009, 21: 5005-5010
[16] Lomba M, Oriol L, Alcalá R, Sánchez C, Moros M, Grazú V, Serrano J L, de la Fuente J M. Macromolecular Bioscience, 2011, 11: 1505-1514
[17] Aimetti A A, Machen A J, Anseth K S. Biomaterials, 2009, 30: 6048-6054
[18] Miller J S, Shen C J, Legant W R, Baranski J D, Blakely B L, Chen C S. Biomaterials, 2010, 31: 3736-3743
[19] Fu Y, Xu K D, Zheng X X, Giacomin A J, Mix A W, Kao W J. Biomaterials, 2012, 33: 48-58
[20] Anderson S B, Lin C, Kuntzler D V, Anseth K S. Biomaterials, 2011, 32: 3564-3574
[21] Cramer N B, Couch C L, Schreck K M, Carioscia J A, Boulden J E, Stansbury J W, Bowman C N. Dental Materials, 2010, 26: 21-28
[22] Shah S S, Kim M, Cahill-Thompson K, Tae G, Revzin A. Soft Matter, 2011, 7: 3133-3140
[23] Bertin A, Schlaad H. Chem. Mater., 2009, 21: 5698-5700
[24] Jo S, Kim D, Woo J, Yoon G, Park Y D, Tae G, Noh I. Macromolecular Research, 2011, 2: 147-155
[25] Davidovich-Pinhas M, Bianco-Peled H. Acta Biomaterialia, 2011, 7: 625-633
[26] Kim M, Lee J Y, Jones C N, Revzin A, Tae G. Biomaterials, 2010, 31: 3596-3603
[27] Tae G, Kim Y J, Choi W I, Kim M, Stayton P S, Hoffman A S. Biomacromolecules, 2007, 8: 1979-1986
[28] Censi R, Fieten P J, Martino P D, Hennink W E, Vermonden T. Macromolecules, 2010, 43: 5771-5778
[29] Dong Y X, Saeed A O, Hassan W, Keigher C, Zheng Y, Tai H Y, Pandit A, Wang W X. Macromolecular Rapid Communications, 2012, 33: 120-126
[30] Dong Y X, Hassan W, Zheng Y, Saeed A O, Cao H L, Tai H Y, Pandit A, Wang W X. Journal of Materials Science: Materials in Medicine, 2012, 23: 25-35
[31] Du F S, Wang Y, Zhang R, Li Z C. Soft Matter, 2010, 6: 835-848
[32] Liu J, Jiang X L, Xu L, Wang X M, Hennink W E, Zhuo R X. Bioconjugate Chemistry, 2010, 10: 1827-1835
[33] Cheng R, Feng F, Meng F H, Deng C, Feijen J, Zhong Z Y. Journal of Controlled Release, 2011, 152: 2-12
[34] Tokatlian T, Segura T. WIRES Nanomedicine and Nanobiotechnology, 2010, 2: 305-315
[35] Varkouhi A K, Verheul R J, Schiffelers R M, Lammers T, Storm G, Hennink W E. Bioconjugate Chemistry, 2010, 21: 2339-2346
[36] Son S, Singha K, Kim W J. Biomaterials, 2010, 31: 6344-6354
[37] Jiang X, Zheng Y R, Chen H H, Leong K W, Wang T H, Mao H Q. Advanced Materials, 2010, 22: 2556-2560
[38] Zhu C H, Zheng M, Meng F H, Mickler F M, Ruthardt N, Zhu X L, Zhong Z Y. Biomacromolecules, 2012, 13: 769-778
[39] Sun W C, Davis P B. Journal of Controlled Release, 2010, 146: 118-127
[40] Gao W, Xu K H, Ji L F, Tang B. Toxicology Letters, 2011, 205: 86-95
[41] Shu S J, Zhang X G, Wu Z M, Wang Z, Li C X. Biomaterials, 2010, 31: 6039-6049
[42] Cerritelli S, Velluto D, Hubbell J A. Biomacromolecules, 2007, 8: 1966-1972
[43] Cabral H, Kataoka K. Science and Technology of Advanced Materials, 2010, 11: 1-10
[44] Torres E, Mainini F, Napolitano R, Fedeli F, Cavalli R, Aime S, Terreno E. Journal of Controlled Release, 2011, 154: 196-202
[45] Park K M, Lee D W, Sarkar B, Jung H, Kim J, Ko Y H, Lee K E, Jeon H, Kim K. Small, 2010, 13: 1430-1441
[46] Verheyen E, van der Wal S, Deschout H, Braeckmans K, de Smedt S, Barendregt A, Hennink W E, van Nostrum C F. Journal of Controlled Release, 2011, 156: 329-336
[47] Chien H W, Tsai W B, Jiang S Y. Biomaterials, 2012, 33: 5706-5712
[48] De Paz M V, Zamora F, Begines B, Ferris C, Galbis J A. Biomacromolecules, 2010, 11: 269-276
[49] Wu C L, Belenda C, Leroux J C, Gauthier M A. Chemistry A European Journal, 2011, 17: 10064-10070
[50] Nguyen D H, Choi J H, Joung Y K, Park K D. Journal of Bioactive and Compatible Polymers, 2011, 26(3): 287-300
[51] Choi S W, Lee S H, Mok H, Park T G. Biotechnology Progress, 2009, 1: 57-63
[52] Sun H L, Guo B N, Cheng R, Meng F H, Liu H Y, Zhong Z Y. Biomaterials, 2009, 30: 6358-6366
[53] Sun P J, Zhou D H, Gan Z H. Journal of Controlled Release, 2011, 155: 96-103
[54] Xu Y M, Meng F H, Cheng R, Zhong Z Y. Macromolecular Bioscience, 2009, 9: 1254-1261
[55] Jiang X L, Li L H, Liu J, Hennink W E, Zhuo R X. Macromolecular Bioscience, 2012, 12: 703-711
[56] Talelli M, Rijcken C J F, Oliveira S, van der Meel R, van Bergen en Henegouwen P M P, Lammers T, van Nostrum C F, Storm G, Hennink W E. Journal of Controlled Release, 2011, 151: 183-192
[57] Oumzil K, Khiati S, Grinstaff M W, Barthélémy P. Journal of Controlled Release, 2011, 151: 123-130

[1] Rui Zhao, Xiao Yang, Xiangdong Zhu, Xingdong Zhang. Application of Trace Element Strontium-Doped Biomaterials in the Field of Bone Regeneration [J]. Progress in Chemistry, 2021, 33(4): 533-542.
[2] Xingang Zuo, Haolan Zhang, Tong Zhou, Changyou Gao. Biomaterials for Regulating Cell Migration and Tissue Regeneration [J]. Progress in Chemistry, 2019, 31(11): 1576-1590.
[3] Zhi Li, Houliang Tang, Anchao Feng, San H. Thang. Synthesis of Zwitterionic Polymers by Living/Controlled Radical Polymerization and Its Applications [J]. Progress in Chemistry, 2018, 30(8): 1097-1111.
[4] Jiang Min, Wang Min, Wei Shiyong, Chen Zhibao, Mu Shichun. Aligned Nanofibers Based on Electrospinning Technology [J]. Progress in Chemistry, 2016, 28(5): 711-726.
[5] Liu Zongguang, Qu Shuxin, Weng Jie. Application of Polydopamine in Surface Modification of Biomaterials [J]. Progress in Chemistry, 2015, 27(2/3): 212-219.
[6] Cheng Xinfeng, Jin Yong, Qi Rui, Fan Baozhu, Li Hanping. Stimuli-Responsive Degradable Polymeric Hydrogels [J]. Progress in Chemistry, 2015, 27(12): 1784-1798.
[7] Liu Xiaobo, Kou Zongkui, Mu Shichun. Porous Graphene Materials [J]. Progress in Chemistry, 2015, 27(11): 1566-1577.
[8] Xu Lina, Ma Peipei, Chen Qiang, Lin Sicong, Shen Jian. Biological Application of Sulfobetaine Methacrylate Polymers [J]. Progress in Chemistry, 2014, 26(0203): 366-374.
[9] Ma Mengjia, Chen Yuyun, Yan Zhiqiang, Ding Jian, He Dannong*, Zhong Jian*. Applications of Atomic Force Microscopy in Nanobiomaterials Research [J]. Progress in Chemistry, 2013, 25(01): 135-144.
[10] Zhao Shuang, Zhao Yanyan, Meng Hengxing, Li Qian, Yin Yuji. Carrier Materials of Mesenchymal Stem Cells Expansion [J]. Progress in Chemistry, 2012, 24(01): 173-181.
[11] Tang Shiyang, Sun Xiaojun, Lin Li, Sun Yan, Liu Xianbin. Monodisperse Mesoporous Silica Nanoparticles: Synthesis and Application in Biomaterials [J]. Progress in Chemistry, 2011, 23(9): 1973-1984.
[12] Wang Wei, Li Bo, Gao Changyou. Modulating the Differentiation of BMSCs by Surface Properties of Biomaterials [J]. Progress in Chemistry, 2011, 23(10): 2160-2168.
[13] . Biomaterials for Spheroidal Aggregate Culture of Hepatocytes [J]. Progress in Chemistry, 2010, 22(09): 1826-1835.
[14] . Anticoagulant Biomaterials [J]. Progress in Chemistry, 2010, 22(04): 760-772.
[15] Hu Xiaohong Zhu Yang Gao Changyou. Hydrogels for Cartilage Regeneration [J]. Progress in Chemistry, 2009, 21(10): 2164-2175.