中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC120722 Previous Articles   Next Articles

• Review •

Metal-Organic Nanotubes

Dai Fangna*, Liu Yunqi, Cui Min, Wang Zongting, Feng Xilan   

  1. College of Science, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
  • Received: Revised: Online: Published:
PDF ( 1173 ) Cited
Export

EndNote

Ris

BibTeX

By self-assembly methods, metal-organic nanotubes constructed from metal ions and bridging organic ligands have afforded a promising approach toward the synthesis of open nanoporous materials. In recent years, the design and synthesis of nanotubular frameworks have attracted intensive attention due to their uniform, fixed internal diameters, impressive topological structures and versatile applications in many areas. This paper give a comprehensive review of the metal-organic nanotubes categories, including the metal-organic nanotubes constructed from calixarene and cyclodextrin ligands, ordinary ligands and mixed ligands, highlights the latest achievements and progress in field of metal-organic nanotubes. The future research directions of the metal-organic nanotubes is pointed out at last. Contents
1 Introduction
2 One dimensional MONTs
2.1 Finite MONTs
2.2 Infinite MONTs
2.3 Interpenetration infinite MONTs
3 The tubular structure in three or two dimensional frameworks
4 Conclusion and outlook

CLC Number: 

[1] Baughman R H, Zakhidov A A, de Heer W A. Science, 2002, 297: 787-792
[2] Sun Y P, Fu K F, Lin Y, Huang W J. Acc. Chem. Res., 2002, 35: 1096-1104
[3] Tasis D, Tagmatarchis N, Bianco A, Prato M. Chem. Rev., 2006, 106: 1105-1136
[4] Avouris P. Acc. Chem. Res., 2002, 35: 1026-1034
[5] Dai H J. Surf. Sci., 2002, 500: 218-241
[6] Datta S. Superlattices Microstruct., 2000, 28: 253-278
[7] Lieber C M. Mrs Bull., 2003, 28: 486-491
[8] Shenton W, Douglas T, Young M, Stubbs G, Mann S. Adv. Mater., 1999, 11: 253-256
[9] Yang F, Jin C, Subedi S, Lee C L, Wang Q, Jiang Y J, Li J, Di Y, Fu D L. Can. Theatre Rev., 2012, 38: 566-579
[10] Kuila T, Bose S, Mishra A K, Khanra P, Kim N H, Lee J H. Prog Mater Sci., 2012, 57: 1061-1105
[11] Horne W S, Stout C D, Ghadiri M R. J. Am. Chem. Soc., 2003, 125: 9372-9376
[12] Yang B, Kamiya S, Shimizu Y, Koshizaki N, Shimizu T. Chem. Mater., 2004, 16: 2826-2831
[13] Park C, Lee I H, Lee S, Song Y, Rhue M, Kim C. Proc. Natl. Acad. Sci., 2006, 103: 1199-1203
[14] Omastova M, Micusik M. Chem. Pape., 2012, 66: 392-414
[15] Assfour B, Seifert G. Int. J. Hydrogen Energy, 2009, 34: 8135-8143
[16] Bu F, Xiao S J. Crystengcomm., 2010, 12: 3385-3387
[17] Chattopadhyay T, Kogiso M, Asakawa M, Shimizu T, Aoyagi M. Catal. Comm., 2010, 12: 9-13
[18] Jin J C, Wang Y Y, Liu P, Liu R T, Ren C, Shi Q Z. Cryst. Growth Des., 2010, 10: 2029-2032
[19] Guo Z Y, Li G H, Zhou L, Su S Q, Lei Y Q, Dang S, Zhang H J. Inorg. Chem., 2009, 48: 8069-8071
[20] Huang X C, Luo W, Shen Y F, Lin X J, Li D. Chem. Comm., 2008, 3995-3997
[21] Gu Z Y, Yang C X, Chang N, Yan X P. Acc. Chem. Res., 2012, 45: 734-745
[22] Ren S B, Yang X L, Zhang J, Li Y Z, Zheng Y X, Du H B, You X Z. Crystengcomm, 2009, 11: 246-248
[23] Dai F N, Zhang G, Sun D F. Glob. J. Inorg. Chem., 2010, 1(2): 83-102
[24] Thanasekaran R, Luo T T, Lee C H, Lu K L. J. Mater. Chem., 2011, 21: 13140-13149
[25] Hong M, Zhao Y, Su W, Cao R, Fujita M, Zhou Z, Chan A S C. Angew. Chem. Int. Ed., 2000, 39: 2468-2470
[26] Tominaga M, Fujita M. Bull. Chem. Soc. Jpn., 2007, 80: 1473-1482
[27] Tominaga M, Kato M, Okano T, Sakamoto S, Yamaguchi K, Fujita M. Chem. Lett., 2003, 32: 1012-1013
[28] Yamaguchi T, Tashiro S, Tominaga M, Kawano M, Ozeki T, Fujita M. Chem. Asian J., 2007, 2(4): 468-476
[29] Tashiro S, Tominaga M, Kusukawa T. Angew. Chem. Int. Ed., 2003, 42(28): 3267-3270
[30] Tashiro S, Tominaga M, Kawano M, Ozeki T, Fujita M. J. Am. Chem. Soc., 2004, 126: 10818-10819
[31] Meng W J, Clegg J K, Nitschke J R. Angew. Chem. Int. Ed., 2012, 51: 1881-1884
[32] 张华承(Zhang H C), 郝爱友(Hao A Y), 申健(Shen J). 化学通报(Chemistry), 2008, 4: 256-264
[33] Orr G W, Barbour L J, Atwood J L. Science, 1999, 285: 1049-1052
[34] Park K M, Lee E, Park C S, Lee S S, Inorg. Chem., 2011, 50: 12085-12090
[35] Wei Y H, Sun D F, Yuan D Q, Liu Y J, Zhao Y, Li X Y, Wang S N, Dou J M, Wang X P, Hao A Y, Sun D F. Chem. Sci., 2012, DOI: 10.1039/C2SC20187A
[36] Dong Y B, Jiang Y Y, Li J, Ma J P, Liu F L, Tang B, Huang R Q, Batten S R. J. Am. Chem. Soc., 2007, 129: 4520-4521
[37] Fang C, Liu Q K, Ma J P, Dong Y B. Inorg. Chem., 2012, 51: 3923-3925
[38] Zhang S Y, Yang S Y, Lan J B, Yang S, You J. Chem. Commun., 2008, 6170-6172
[39] Liu W T, Ou Y C, Xie Y L, Lin Z, Tong M L. Eur. J. Inorg. Chem., 2009, 4213-4218
[40] Luo T T, Wu H C, Jao Y C, Huang S M, Tseng T W, Wen Y S, Lee G H, Peng S M, Lu K L. Angew. Chem. Int. Ed., 2009, 48: 9461-9464
[41] Xia J, Shi W, Chen X Y, Wang H S, Cheng P, Liao D Z, Yan S P. Dalton Trans., 2007, 2373-2375
[42] Panda T, Kundu T, Banerjee R. Chem Comm., 2012, 48: 5464-5466
[43] Zhao X L, Sun D, Hu T P, Yuan S, Gu L G, Cong H J, He H Y, Sun D F. Dalton Trans., 2012, 41: 4320-4323
[44] Zhang K L, Hou C T, Song J J. Cryst. Eng. Comm., 2012, 14: 590-600
[45] Ren S B, Yang X L, Zhang J, Li Y Z, Zheng Y X, Du H B. Cryst. Eng. Comm., 2009, 11: 246-248
[46] Zhang C Q, Chen C, Liu S, Zhang N. Inorg. Chem. Comm., 2012, 20: 18-22
[47] Dai F N, He H Y, Sun D F. J. Am. Chem. Soc., 2008, 130: 14064-14065
[48] Dai F N, He H Y, Sun D F. Inorg. Chem., 2009, 48: 4613-4615
[49] Huang K L, Liu X, Chen X, Wang D Q. Cryst. Growth Des., 2009, 9: 1646-1650
[50] 戴昉纳(Dai F N). 山东大学博士论文(Doctoral Dissertation of Shandong University), 2011
[51] Liu J, Thallapally P K, McGrail B P, Brown D R, Liu J. Chem. Soc. Rev., 2012, 41: 2308-2322
[52] Prasad T K, Suh M P. Chem. Eur. J., 2012, 18: 8673-8680
[53] Wen L, Cheng P, Lin W B. Chem. Sci., 2012, 3: 2288-2292
[54] Cui Y, Lee S J, Lin W. J. Am. Chem. Soc., 2003, 125: 6014-6015
[55] Cao X Y, Zhang J, Cheng J K, Kang Y, Yao Y G. Crystengcomm, 2004, 6: 315-317
[56] Wang X L, Qin C, Wang E B, Li Y G, Su Z M, Xu L, Carlucci L. Angew. Chem. Int. Ed., 2005, 44: 5824-5827
[57] Li B, Zang S Q, Ji C, Du C X, Hou H W, Mak T C W. Dalton Trans., 2011, 40: 788-792
[58] Li J R, Kuppler R J, Zhou H C. Chem. Soc. Rev., 2009, 38(101): 1477-1504
[59] Ren T D, Bae Y S, Snurr R Q. Chem. Soc. Rev., 2009, 38 (110): 1237-1247
[60] Walton K S, Millward A R, Dubbeldam D, Frost H, Low J J, Yaghi O M, Snurr R Q. J. Am. Chem. Soc., 2008, 130 (114): 406-407
[61] Su C Y, Goforth A M, Smith M D, Pellechia P J, zur Loye H C. J. Am. Chem. Soc., 2004, 126: 3576-3586
[62] He X, Lu C Z, Yuan D Q. Inorg. Chem., 2006, 45: 5760-5766
[63] Zhao B, Cheng P, Dai Y, Cheng C, Liao D Z, Yan S P, Jiang Z H, Wang G L. Angew. Chem. Int. Ed., 2003, 42: 934-936
[64] Zhao B, Cheng P, Chen X Y, Cheng C, Shi W, Liao D Z, Yan S P, Jiang Z H. J. Am. Chem. Soc., 2004, 126: 3012-3013
[65] Ma S Q, Simmons J M, Yuan D Q, Li J R, Weng W, Liu D J, Zhou H C. Chem. Commun., 2009, 4049-4051
[66] Sun Y Q, Zhang J, Chen Y M, Yang Y. Angew. Chem. Int. Ed., 2005, 44: 5814-5817
[67] Wang W H, Tian H R, Zhou Z C, Feng T L, Cheng J W. Cryst. Growth Des., 2012, 12: 2567-2571
[68] Ehrhart J, Planeix J M, Kyritsakas-Gruber N, Hosseini M. Dalton Trans., 2009, 2552-2557
[69] Liu W, Ye L, Liu X, Yuan L M, Jiang J X, Yan C G. Cryst. Eng. Comm., 2008, 10: 1395-1403
[70] Zeng Q, Li M, Wu D. Crystal Growth & Design., 2008, 8: 869-876
[71] Seung U S, Kang H P, Bo Y K, Young K C. Cryst. Growth Des., 2003, 3: 507-512
[72] Jung O S, Kim Y J, Kim K M, Lee Y A. J. Am. Chem. Soc., 2002, 124: 7906-7907
[73] Huang X C, Luo W, Shen Y F, Lin X J, Li D. Chem. Commun., 2008, 3995-3997
[74] Feng X, Wang J G, Liu B, Wang L Y, Zhao J S, Ng S. Cryst. Growth Des., 2012, 12: 927-938
[75] Zhong D C, Meng M, Deng J H, Luo X Z, Xie Y R. Inorg. Chem. Comm., 2011, 14: 1952-1956
[76] Xu X D, Zhang J, Chen L J, Zhao X L, Wang D X, Yang H B. Chem. Eur. J., 2012, 18: 1659-1667
[77] Seeber G, Cooper G J T, Graham N. Newton, Rosnes M H, Long D L, Kariuki B M, Kogerler P, Cronin L. Chem. Sci., 2010, 1: 62-67
[78] Sikora B J, Wilmer C E, Greenfield M L, Snurr R Q. Chem. Sci., 2012, 3: 2217-2223
[79] Ma L, Peng G, Cai J B, Deng H. Z. Anorg. Chem., 2011, 637: 2278-2281
[80] Zhang K L, Hou C T, Song J J, Deng Y, Li L, Ng S W, Diao G W. Crystengcomm., 2012, 14: 590-600
[81] Assfour B, Seifert G. International Journal of Hydrogen Energy, 2009, 34: 8135-8143

[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[3] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[4] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[5] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[6] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[7] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[8] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.
[9] Peng Ning, Yunhui Cheng, Zhou Xu, Li Ding, Maolong Chen. Application of Metal-Organic Framework Materials in Enrichment of Active Peptides [J]. Progress in Chemistry, 2020, 32(4): 497-504.
[10] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[11] Xiaohan Wang, Caixia Liu, Chunfeng Song, Degang Ma, Zhenguo Li, Qingling Liu. Application of Metal-Organic Frameworks for Low-Temperature Selective Catalytic Reduction of NO with NH3 [J]. Progress in Chemistry, 2020, 32(12): 1917-1929.
[12] Jinghao Liu, Xueqian Wu, Yufeng Wu, Jiamei Yu. Computational Study on Adsorption and Separation of C2 and C3 Hydrocarbons by Metal-Organic Frameworks [J]. Progress in Chemistry, 2020, 32(1): 133-144.
[13] Yuanming Tan, Hao Meng, Xia Zhang. Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes [J]. Progress in Chemistry, 2019, 31(7): 980-995.
[14] Xinyi Lai, Zhiyong Wang, Yongtai Zheng, Yongming Chen. Nanoscale Metal Organic Frameworks for Drug Delivery [J]. Progress in Chemistry, 2019, 31(6): 783-790.
[15] Rui Wang, Guoan Tai, Zenghui Wu, Wei Shao, Chuang Hou, Jinqian Hao. Theoretical and Experimental Research of Boron Nanostructures [J]. Progress in Chemistry, 2019, 31(12): 1696-1711.
Viewed
Full text


Abstract

Metal-Organic Nanotubes