中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (06): 1031-1041 DOI: 10.7536/PC120716 Previous Articles   Next Articles

• Review •

Quantitative Analysis of Surface-Enhanced Raman Spectroscopy

Tao Qin, Dong Jian, Qian Weiping*   

  1. State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
  • Received: Revised: Online: Published:
PDF ( 2173 ) Cited
Export

EndNote

Ris

BibTeX

As a promising analytical technique in recent years, surface-enhanced Raman spectroscopy (SERS) has received extensive attention due to its low limit of detection, high sensitivity and high specificity. Despite its tremendous potential, SERS was not widely applied in quantitative analysis of chemical and biological samples in the past years. However, the explosive development of nanotechnology and nano-fabrication has assisted the development of SERS as a quantitative analysis tool. As the enhancement of Raman scattering strongly depends on nanoscale surface morphology of the enhancing surface and can be easily influenced by other factors in an experiment, it is still a challenge to obtain reliable results comparable to those obtained from state-of-the-art analysis methods. The fabrication of three kinds of enhancing media including traditional solid substrates, colloidal nanoparticles and plasmonic nanostructures based on nano-fabrication and their respective advantages and drawbacks for quantitative SERS detection are summerized in this review. Furthermore, how to improve the sensitivity and reliability is investigated in aspects of molecular orientation, excitation wavelength, internal standard and data analysis. Meanwhile, several successful cases of quantitative SERS detection are presented. Finally, applications and prospects of its future researches are proposed. Contents
1 Introduction
2 Enhancing media
2.1 Preparation of enhancing media
2.2 Surface modification of enhancing media
2.3 Improve the sensitivity and reliability
3 Experimental factors
3.1 Molecular orientation
3.2 Excitation wavelength
3.3 Internal standard
3.4 Data analyzing
4 Examples of quantitative SERS
4.1 Direct detection
4.2 Indirect detection
5 Conclusions and outlook

CLC Number: 

[1] Hering K, Cialla D, Ackermann K, Dörfer T, Möller R, Schneidewind H, Mattheis R, Fritzsche W, Rösch P, Popp J. Anal. Bioanal. Chem., 2008, 390: 113-124
[2] Capitán-Vallvey L F, López A J P. Analytica Chimica Acta, 2011, 696: 27-46
[3] Fan M, Andrade G F S, Brolo A G. Analytica Chimica Acta, 2011, 693: 7-25
[4] Kneipp K, Kneipp H, Kartha V B, Manoharan R, Deinum G, Itzkan I, Dasari R R, Feld M S. Phys. Rev. E, 1998, 57: 6281-6284
[5] Nie S M, Emery S R. Science, 1997, 275: 1102-1106
[6] Lombardi J R, Birke R L. Acc. Chem. Res., 2009, 42: 734-742
[7] 杨序纲(Yang X G), 吴琪琳(Wu Q L). 拉曼光谱的分析与应用(Analysis and Application of Raman Spectroscopy ). 北京: 国防工业出版社(Beijing: National Defence Industry Press), 2008. 37-38
[8] Hudson S D, Chumanov G. Anal. Bioanal. Chem., 2009, 394: 679-686
[9] Barhoumi A, Zhang D, Tam F, Halas N J. J. Am. Chem. Soc., 2008, 130: 5523-5529
[10] Hu J, Zheng P C, Jiang J H, Shen G L, Yu R Q, Liu G K. Analyst, 2010, 135: 1084-1089
[11] Xu T T, Huang J A, He L F, He Y, Su S, Lee S T. Appl. Phys. Lett., 2011, 99: art. no. 153113
[12] Ni F, Sheng R, Cotton T M. Anal. Chem., 1990, 62: 1958-1963
[13] Jarvis R M, Goodacre R. Chem. Soc. Rev., 2008, 37: 931-936
[14] Liu X, Huan S, Bu Y, Shen G, Yu R. Talanta, 2008, 75: 797-803
[15] Chen K, Han H, Luo Z, Wang Y, Wang X. Biosens. Bioelectron., 2012, 34: 118-124
[16] Lin X M, Cui Y, Xu Y H, Ren B, Tian Z Q. Anal. Bioanal. Chem., 2009, 394: 1729-1745
[17] Brown R J C, Milton M J T. J. Raman Spectrosc., 2008, 39: 1313-1326
[18] Fleischmann M, Hendra P, McQuillan A. Chemical Physics Letters, 1974, 26: 163-166
[19] Aroca R. Surface-Enhanced Vibrational Spectroscopy. NY: Wiley, 2006. 156-170
[20] Semin D J, Rowlen K L. Anal. Chem., 1994, 66: 4324-4331
[21] Norrod K L, Sudnik L M, Rousell D, Rowlen K L. Appl. Spectrosc., 1997, 51: 994-1001
[22] Creighton J A, Blatchford C G, Albrecht M G. J. Chem. Soc. Faraday Trans. 2, 1979, 75: 790-798
[23] Aroca R, Alvarez-Puebla R, Pieczonka N, Sanchez-Cortez S, Garcia-Ramos J. Advances in Colloid and Interface Science, 2005, 116: 45-61
[24] Camafeita L, Sánchez-Cortés S, García-Ramos J. J. Raman Spectrosc., 1995, 26: 149-154
[25] Lee P, Meisel D J. Phys. Chem., 1982, 86: 3391-3395
[26] ?anchez-Cortés S, Garcia-Ramos J J. Raman Spectrosc., 1992, 23: 61-66
[27] Leopold N, Lendl B. J. Phys. Chem. B, 2003, 107: 5723-5727
[28] 高倩(Gao Q), 钱勇(Qian Y), 夏炎(Xia Y), 蒋彩云(Jiang C Y), 钱卫平(Qian W P). 化学学报(Acta Chimica Sinica), 2011, 69(14): 1617-1621
[29] Silvert P Y, Herrera-Urbina R, Duvauchelle N, Vijayakrishnan V, Elhsissen K T. J. Mater. Chem., 1996, 6: 573-577
[30] Dos Santos D S Jr, Alvarez-Puebla R A, Oliveira O N Jr, Aroca R F. J. Mater. Chem., 2005, 15: 3045-3049
[31] Su Q, Ma X, Dong J, Jiang C, Qian W. ACS Appl. Mater. Interfaces, 2011, 3: 1873-1879
[32] SΛ'nchez-Cortés S, García-Ramos J V, Morcillo G, Tinti A. Journal of Colloid and Interface Science, 1995, 175: 358-368
[33] SΛ'nchez-Cortés S, García-Ramos J V, Morcillo G. Journal of Colloid and Interface Science, 1994, 167: 428-436
[34] Shirtcliffe N, Nickel U, Schneider S. Journal of Colloid and Interface Science, 1999, 211: 122-129
[35] SΛ'nchez-Cortés S, García-Ramos J V. Surf. Sci., 2001, 473: 133-142
[36] Bell S E J, Sirimuthu N M S. Chem. Soc. Rev., 2008, 37: 1012-1024
[37] Alvarez-Puebla R A, Arceo E, Goulet P J G, Garrido J J, Aroca R F. J. Phys. Chem. B, 2005, 109: 3787-3792
[38] Banholzer M J, Millstone J E, Qin L, Mirkin C A. Chem. Soc. Rev., 2008, 37: 885-897
[39] Li X, Xu W, Zhang J, Jia H, Yang B, Zhao B, Li B, Ozaki Y. Langmuir, 2004, 20: 1298-1304
[40] Grabar K C, Freeman R G, Hommer M B, Natan M J. Anal. Chem., 1995, 67: 735-743
[41] Brown K R, Natan M J. Langmuir, 1998, 14: 726-728
[42] Kuncicky D M, Prevo B G, Velev O D. J. Mater. Chem., 2006, 16: 1207-1211
[43] Willets K A, van Duyne R P. Annu. Rev. Phys. Chem., 2007, 58: 267-297
[44] Dieringer J A, McFarland A D, Shah N C, Stuart D A, Whitney A V, Yonzon C R, Young M A, Zhang X, van Duyne R P. Faraday Discuss., 2006, 132: 9-26
[45] Yang S, Cai W, Kong L, Lei Y. Adv. Funct. Mater., 2010, 20: 2527-2533
[46] Tao A R, Huang J, Yang P. Acc. Chem. Res., 2008, 41: 1662-1673
[47] Zhang B, Wang H, Lu L, Ai K, Zhang G, Cheng X. Adv. Funct. Mater., 2008, 18: 2348-2355
[48] Félidj N, Truong S L, Aubard J, Lévi G, Krenn J R, Hohenau A, Leitner A, Aussenegg F R. J. Chem. Phys., 2004, 120: 7141-7146
[49] Fromm D P, Sundaramurthy A, Kinkhabwala A, Schuck P J, Kino G S, Moerner W E. J. Chem. Phys., 2006, 124: art. no. 061101
[50] Abu Hatab N A, Oran J M, Sepaniak M J. ACS Nano, 2008, 2: 377-385
[51] Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q. Nature, 2010, 464: 392-395
[52] Jiang C, Qian Y, Gao Q, Dong J, Qian W, Ren B, Wang Z L, Tian Z Q. J. Mater. Chem., 2010, 20: 8711-8716
[53] Jung H Y, Park Y K, Park S, Kim S K. Analytica Chimica Acta, 2007, 602: 236-243
[54] Ko H, Chang S, Tsukruk V V. ACS Nano, 2008, 3: 181-188
[55] 崔颜(Cui Y), 任斌(Ren B), 田中群(Tian Z Q). 东南大学学报(Journal of Southeast University), 2011, 30(1): 254-262
[56] Park T, Lee S, Seong G H, Choo J, Lee E K, Kim Y S, Ji W H, Hwang S Y, Gweon D G. Lab Chip, 2005, 5: 437-442
[57] Bell S E J, Mackle J N, Sirimuthu N M S. Analyst, 2005, 130: 545-549
[58] Freeman R G, Grabar K C, Allison K J, Bright R M, Davis J A, Guthrie A P, Hommer M B, Jackson M A, Smith P C, Walter D G. Science, 1995, 267: 1629-1632
[59] McLaughlin C, MacMillan D, McCardle C, Smith W E. Anal. Chem., 2002, 74: 3160-3167
[60] Ruan C, Wang W, Gu B. Analytica Chimica Acta, 2006, 567: 114-120
[61] Stuart D A, Yuen J M, Shah N, Lyandres O, Yonzon C R, Glucksberg M R, Walsh J T, van Duyne R P. Anal. Chem., 2006, 78: 7211-7215
[62] Yonzon C R, Haynes C L, Zhang X, Walsh J T Jr, van Duyne R P. Anal. Chem., 2004, 76: 78-85
[63] Natan M J. Faraday Discuss., 2006, 132: 321-328
[64] Keir R, Igata E, Arundell M, Smith W E, Graham D, McHugh C, Cooper J M. Anal. Chem., 2002, 74: 1503-1508
[65] Bell S E J, Spence S J. Analyst, 2000, 126: 1-3
[66] Yeo B S, Schmid T, Zhang W, Zenobi R. Appl. Spectrosc., 2008, 62: 708-713
[67] Faulds K, Smith W, Graham D, Lacey R. Analyst, 2002, 127: 282-286
[68] Dong O, Lam D C C. Materials Chemistry and Physics, 2011, 126: 91-96
[69] Rao Y, Chen Q, Dong J, Qian W. Analyst, 2011, 136: 769-774
[70] Rao Y, Tao Q, An M, Rong C, Dong J, Dai Y, Qian W. Langmuir, 2011, 27: 13308-13313
[71] Barhoumi A, Zhang D, Halas N J. J. Am. Chem. Soc., 2008, 130: 14040-14041
[72] Fleger Y, Mastai Y, Rosenbluh M, Dressler D J. Raman Spectrosc., 2009, 40: 1572-1577
[73] Yu Q, Golden G. Langmuir, 2007, 23: 8659-8662
[74] Chowdhury J, Sarkar J, Tanaka T, Talapatra G. J. Phys. Chem. C, 2008, 112: 227-239
[75] Ling X, Wu J, Xu W, Zhang J. Small, 2012, 8: 1365-1372
[76] Jensen T R, Duval M L, Kelly K L, Lazarides A A, Schatz G C, van Duyne R P. J. Phys. Chem. B, 1999, 103: 9846-9853
[77] Felidj N, Aubard J, Levi G, Krenn J, Hohenau A, Schider G, Leitner A, Aussenegg F. Appl. Phys. Lett., 2003, 82: 3095-3097
[78] McFarland A D, Young M A, Dieringer J A, van Duyne R P. J. Phys. Chem. B, 2005, 109: 11279-11285
[79] Grand J, de La Chapelle M L, Bijeon J L, Adam P M, Vial A, Royer P. Phys. Rev. B, 2005, 72: art. no. 033407
[80] Guillot N, Shen H, Fremaux B, Peron O, Rinnert E, Toury T, de La Chapelle M L. Appl. Phys. Lett., 2010, 97: art. no. 023113
[81] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, van Duyne R P. Nature Materials, 2008, 7: 442-453
[82] Alvarez-Puebla R, Cui B, Bravo-Vasquez J P, Veres T, Fenniri H. J. Phys. Chem. C, 2007, 111: 6720-6723
[83] Shadi I T, Cheung W, Goodacre R. Anal. Bioanal. Chem., 2009, 394: 1833-1838
[84] Centeno S A, Shamir J. Journal of Molecular Structure, 2008, 873: 149-159
[85] Zakel S, Rienitz O, Güttler B, Stosch R. Analyst, 2011, 136: 3956-3961
[86] Yin P G, Jiang L, Lang X F, Guo L, Shihe Y. Biosens. Bioelectron., 2011, 26: 4828-4831
[87] Lee S, Choi J, Chen L, Park B, Kyong J B, Seong G H, Choo J, Lee Y, Shin K H, Lee E K. Analytica Chimica Acta, 2007, 590: 139-144

[88] Lorén A, Engelbrektsson J, Eliasson C, Josefson M, Abrahamsson J, Johansson M, Abrahamsson K. Anal. Chem., 2004, 76: 7391—7395

[89] Zhang D, Xie Y, Deb S K, Davison V J, Ben-Amotz D. Anal. Chem., 2005, 77: 3563-3569

[90] Zhang D, Ansar S M. Anal. Chem., 2010, 82: 5910-5914

[91] Deb S K, Davis B, Knudsen G M, Gudihal R, Ben-Amotz D, Davisson V J. J. Am. Chem. Soc., 2008, 130: 9624-9625

[92] Tsoutsi D, Montenegro J M, Dommershausen F, Koert U, Liz-Marzan L M, Parak W J, Alvarez-Puebla R A. ACS Nano, 2011, 5: 7539-7546

[93] Krafft C, Steiner G, Beleites C, Salzer R. J. Biophoton., 2009, 2: 13-28

[94] Pearman W F, Fountain A W. Appl. Spectrosc., 2006, 60: 356-365

[95] Shafer-Peltier K E, Haynes C L, Glucksberg M R, van Duyne R P. J. Am. Chem. Soc., 2003, 125: 588-593

[96] Driskell J, Seto A, Jones L, Jokela S, Dluhy R, Zhao Y P, Tripp R. Biosens. Bioelectron., 2008, 24: 917-922

[97] Wang H, Malvadkar N, Koytek S, Bylander J, Reeves W B, Demirel M C. J. Biomed. Opt., 2010, 15: art. no. 027004

[98] Stosch R, Henrion A, Schiel D, Güttler B. Anal. Chem., 2005, 77: 7386-7392

[99] Chen L, Choo J. Electrophoresis, 2008, 29: 1815-1828

[100] Bishnoi S W, Rozell C J, Levin C S, Gheith M K, Johnson B R, Johnson D H, Halas N J. Nano Lett., 2006, 6: 1687-1692

[101] Chon H, Lim C, Ha S M, Ahn Y, Lee E K, Chang S I, Seong G H, Choo J. Anal. Chem., 2010, 82: 5290-5295

[1] Qian Peng, Jingjing Zhang, Xinyue Fang, Jie Ni, Chunyuan Song. Surface-Enhanced Raman Spectroscopy on Detection of Myocardial Injury-Related Biomarkers [J]. Progress in Chemistry, 2022, 34(12): 2573-2587.
[2] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[3] Tang Zhijiao, Li Gongke*, Hu Yuling*. Advances in Preparation and Applications in Quantitative Analysis of Nitrogen-Doped Carbon Dots [J]. Progress in Chemistry, 2016, 28(10): 1455-1461.
[4] L? Jitao, Zhang Shuzhen* . Methods for Separation and Analysis of Nanomaterials in the Environment [J]. Progress in Chemistry, 2012, 24(12): 2374-2383.
[5] Wang Sheng, Zou Xia, Zhang Yan. Recent Advances in Mass Spectrometry Based Analysis of Protein O-glycosylation [J]. Progress in Chemistry, 2010, 22(12): 2428-2435.
[6] Liang Jiaran1 Zhong Wenying1** Yu Junsheng2. Application of Quantum Dots(QDs) as Fluoresent Probes in Quantitative Analysis [J]. Progress in Chemistry, 2008, 20(09): 1385-1390.