中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC120714 Previous Articles   Next Articles

• Review •

Applications of Atomic Force Microscopy in Nanobiomaterials Research

Ma Mengjia1,2, Chen Yuyun2, Yan Zhiqiang2, Ding Jian1, He Dannong*1,2, Zhong Jian*2   

  1. 1. State Key Laboratory of Metal Matrix Composites (SKLMMC), College of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. National Engineering Research Center for Nanotechnology, Shanghai 200241, China
  • Received: Revised: Online: Published:
PDF ( 1386 ) Cited
Export

EndNote

Ris

BibTeX

In the past two decades, atomic force microscopy (AFM) has been widely used for studying nanobiomaterials related research. AFM is a powerful tool that can reveal the surface structure and mechanical properties of nanobiomaterials, and is also known as a nanofabrication tool to manipulate and process nanobiomaterials. The focus of this review is on the recent progress in the applications of AFM for nanobiomaterials, which mainly includes imaging, force measurements, and nanofabrication of nanobiomaterials. AFM can be used to image the topography of nanobiomaterials and analyze the feature height and surface roughness, image the dynamic process of nanobiomaterials related processes in situ. AFM phase imaging can be used to image some surface features of nanobiomaterials those AFM height imaging cannot detect. AFM force curves can be applied to measure the adhesion force between tip and nanobiomaterials, and measure the intermolecular and intramolecular forces of nanobiomaterials. AFM nanoindentation can be applied to measure the mechanical properties (elasticity, Young’s modulus, hardness, nanofracture behavior, etc) of nanobiomaterials. In addition, AFM has been explored to fabricate nanobiomaterials in a precise, controllable and reproducible fashion. In summary, as a prowerful nanotechnological tool, AFM has provided an ideal surface-analysis and surface-fabrication tool in the nanobiomaterials related research. Contents
1 Introduction
2 Components and principles of AFM
3 Imaging and characterization
3.1 Topographical imaging
3.2 Phase imaging
4 Mechanical properties measurements
4.1 Force measurements
4.2 Other mechanical properties measurements
5 Nanofabrication
6 Summary and outlook

CLC Number: 

[1] Binnig G, Quate C F, Gerber C. Phys. Rev. Lett., 1986, 56: 930-933
[2] 熊党生(Xiong D S). 生物材料与组织工程(Biomaterials and Tissue Engineering). 北京: 科学出版社(Beijing: Science Press), 2010. 170-218
[3] Zhong J. Integr. Biol., 2011, 3: 632-644
[4] Alessandrini A, Facci P. Meas. Sci. Technol., 2005, 16: 65-92
[5] Martin Y, Williams C C, Wickramasinghe H K. J. Appl. Phys., 1987, 61: 4723-4729
[6] Zhong Q, Inniss D, Kjoller K, Elings V B. Surf. Sci., 1993, 290: L688-L692
[7] Hansma P K, Cleveland J P, Radmacher M, Walters D A, Hillner P E, Bezanilla M, Fritz M, Vie D, Hansma H G, Prater C B, Massie J, Fukunaga L, Gurley J, Elings V. Appl. Phys. Lett., 1994, 64: 1738-1740
[8] Putman C A J, Werf K O V D, Grooth B G D, Hulst N F V, Greve J. Appl. Phys. Lett., 1994, 64: 2454-2456
[9] Meng F, Hlady V, Tresco P A. Biomaterials, 2012, 33: 1323-1335
[10] Voigt N V, Torring T, Rotaru A, Jacobsen M F, Ravnsbaek J B, Subramani R, Mamdouh W, Kjems J, Mokhir A, Besenbacher F, Gothelf K V. Nat. Nano., 2010, 5: 200-203
[11] Maune H T, Han S P, Barish R D, Bockrath M, Goddard W A Ⅲ, Rothemund P W K, Winfree E. Nat. Nano., 2010, 5: 61-66
[12] Li C, Adamcik J, Mezzenga R. Nat. Nano., 2012, 7: 421-427
[13] Ruan L P, Zhang H Y, Luo H L, Liu J P, Tang F S, Shi Y K, Zhao X J. Proc. Natl. Acad. Sci. USA, 2009, 106: 5105-5110
[14] Dutta N K, Choudhury N R, Truong M Y, Kim M, Elvin C M, Hill A J. Biomaterials, 2009, 30: 4868-4876
[15] Adamcik J, Jung J M, Flakowski J, De Los Rios P, Dietler G, Mezzenga R. Nat. Nano., 2010, 5: 423-428
[16] Costa R R, Custodio C A, Arias F J, Rodriguez-Cabello J C, Mano J F. Small, 2011, 7: 2640-2649
[17] Bhatt S, Pulpytel J, Ceccone G, Lisboa P, Rossi F, Kumar V, Arefi-Khonsari F. Langmuir, 2011, 27: 14570-14580
[18] Truong V K, Lapovok R, Estrin Y S, Rundell S, Wang J Y, Fluke C J, Crawford R J, Ivanova E P. Biomaterials, 2010, 31: 3674-3683
[19] Yang J, Mei Y, Hook A L, Taylor M, Urquhart A J, Bogatyrev S R, Langer R, Anderson D G, Davies M C, Alexander M R. Biomaterials, 2010, 31: 8827-8838
[20] Hu X, Park S H, Gil E S, Xia X X, Weiss A S, Kaplan D L. Biomaterials, 2011, 32: 8979-8989
[21] Parkinson C R, Shahzad A, Rees G D. J. Struct. Biol., 2010, 171: 298-302
[22] Chen P, Jiang L, Han D. Small, 2011, 7: 2825-2835
[23] Yang G C, Wong M K, Lin L E, Yip C M. Nanotechnology, 2011, 22(49): art. no. 494018
[24] Chen L, Liu M, Bai H, Chen P, Xia F, Han D, Jiang L. J. Am. Chem. Soc., 2009, 131: 10467-10472
[25] Paredes J I, Villar-Rodil S, Solís-Fernaández P, Martínez-Alonso A, Tascón J M D. Langmuir, 2009, 25: 5957-5968
[26] Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L, Muller D A. Nature, 2011, 469: 389-392
[27] Liu H, Fu S, Zhu J Y, Li H, Zhan H. Enz. Microbial Tech., 2009, 45: 274-281
[28] Greving I, Cai M, Vollrath F, Schniepp H C. Biomacromolecules, 2012, 13: 676-682
[29] Mi L, Bernards M T, Cheng G, Yu Q, Jiang S. Biomaterials, 2010, 31: 2919-2925
[30] Neuman K C, Nagy A. Nat. Meth., 2008, 5: 491-505
[31] Kim M, Wang C C, Benedetti F, Rabbi M, Bennett V, Marszalek P E. Adv. Mater., 2011, 23: 5684-5688
[32] Rakshit S, Sivasankar S. Soft Matter, 2011, 7: 2348-2351
[33] Hu X, Wang X, Rnjak J, Weiss A S, Kaplan D L. Biomaterials, 2010, 31: 8121-8131
[34] Kloxin A M, Benton J A, Anseth K S. Biomaterials, 2010, 31: 1-8
[35] Ho S P, Kurylo M P, Fong T K, Lee S S J, Wagner H D, Ryder M I, Marshall G W. Biomaterials, 2010, 31: 6635-6646
[36] Sridharan I, Ma Y, Kim T, Kobak W, Rotmensch J, Wang R. Biomaterials, 2012, 33: 1520-1527
[37] Yan Y, Hu Z, Zhao X, Sun T, Dong S, Li X. Small, 2010, 6: 724-728
[38] Zhang F C, Zhang F, Su H N, Li H, Zhang Y, Hu J. ACS Nano, 2010, 4: 5791-5796
[39] Vicary J A, Miles M J. Nanotechnology, 2009, 20: art. no. 095302
[40] Chen Y S, Hong M Y, Huang G S. Nat. Nano., 2012, 7: 197-203
[41] Hook A L, Voelcker N H, Thissen H. Acta Biomater., 2009, 5: 2350-2370
[42] Narui Y, Salaita K S. Chem. Sci., 2012, 3: 794-799
[43] Rakickas T, Ericsson E M, Ruel , Liedberg B, Valiokas R. Small, 2011, 7: 2153-2157
[44] Li H, He Q, Wang X, Lu G, Liusman C, Li B, Boey F, Venkatraman S S, Zhang H. Small, 2011, 7: 226-229
[45] Fotiadis D, Hasler L, Müller D J, Stahlberg H, Kistler J, Engel A. J. Mol. Biol., 2000, 300: 779-789
[46] Zhong J, Yang C, Zheng W, Huang L, Hong Y, Wang L, Sha Y. Colloid. Surf. B: Biointerfaces, 2010, 77: 40-46
[47] Ando T, Uchihashi T, Kodera N, Yamamoto D, Miyagi A, Taniguchi M, Yamashita H. Pflüg. Arch. Eur. J. Phy., 2008, 456: 211-225
[48] Wickham S F J, Endo M, Katsuda Y, Hidaka K, Bath J, Sugiyama H, Turberfield A J. Nat. Nano., 2011, 6: 166-169
[49] Zhao B, Howard-Knight J P, Humphris A D L, Kailas L, Ratcliffe E C, Foster S J, Hobbs J K. Rev. Sci. Instrum., 2009, 80: art. no. 093707
[50] Carberry D M, Picco L, Dunton P G, Miles M J. Nanotechnology, 2009, 20: art. no. 434018
[51] Bhushan B. Scanning Probe Microscopy in Nanoscience and Nanotechnology. Nanoscience and Technology. 1st ed. Berlin: Springer, 2010. 395-423

[1] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[2] Aobo Geng, Qiang Zhong, Changtong Mei, Linjie Wang, Lijie Xu, Lu Gan. Applications of Wet-Functionalized Graphene in Rubber Composites [J]. Progress in Chemistry, 2019, 31(5): 738-751.
[3] Men Weiwei,Lu Zaijun*. High Performance Polybenzoxazines [J]. Progress in Chemistry, 2007, 19(05): 779-786.