中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC120653 Previous Articles   Next Articles

• Review •

Hydrothermal Synthesis of Tungsten Oxide Micro/Nanostructures

Gao Xiaoqing, Rao Xuehui, Wang Jide, Xiao Feng, Su Xintai*   

  1. Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, Xinjiang University, Urumqi 830046, China
  • Received: Revised: Online: Published:
PDF ( 2159 ) Cited
Export

EndNote

Ris

BibTeX

Tungsten oxides inorganic semiconductor materials have received considerable attention in recent years because of their unique physico-chemical properties and widespread applications in various areas, such as electrochromic (EC) devices, gas sensors, photocatalytic systems, photoelectrochemical devices, and so on. Recently hydrothermal method has been exploited for the preparation of tungsten oxide micro/nanostructures with different sizes and shapes. Combining with our group's work on the preparation of tungsten oxide micro/nanomaterials, the progress of preparation of tungsten oxide micro/nanomaterials by hydrothermal method is presented. The key influencing factors, such as the choice of reagents, the reaction time and temperature, are discussed in detail. The development trends of the tungsten oxide micro/nanomaterials fabricated by hydrothermal method are also proposed. Contents
1 Introduction
2 Structure of WOx
3 WOx powder fabricated by hydrothermal method
3.1 Zero-dimensional WOx micro/nanostructures
3.2 One-dimensional WOx micro/nanostructures
3.3 Two-dimensional WOx micro/nanostructures
3.4 Three-dimensional hierarchical WOx
3.5 WOx composites
3.6 Summaries
4 Conclusions

CLC Number: 

[1] Li X L, Lou T J, Sun X M, Li Y D. Inorg. Chem., 2004, 43: 5442-5449
[2] Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J. Adv. Mater., 2012, 24: 229-251
[3] Sun M, Xu N, Cao Y, Yao J, Wang E. J. Mater. Res., 2000, 15: 927-933
[4] He T, Yao J. J. Mater. Chem., 2007, 17: 4547-4557
[5] Lee S H, Deshpande R, Parilla P A, Jones K M, To B, Mahan A H, Dillon A C. Adv. Mater., 2006, 18: 763-766
[6] Li Y, Bando Y, Golberg D. Adv. Mater., 2003, 15: 1294-1296
[7] Vallejos S, Stoycheva T, Umek P, Navio C, Snyders R, Bittencourt C, Llobet E, Blackman C, Moniz S, Correig X. Chem. Commun., 2011, 47: 565-567
[8] Xi G, Ye J, Ma Q, Su N, Bai H, Wang C. J. Am. Chem. Soc., 2012, 134: 6508-6511
[9] Wang F, Di Valentin C, Pacchioni G. J. Phys. Chem. C, 2012, 116: 8901-8909
[10] D'Arienzo M, Armelao L, Mari C M, Polizzi S, Ruffo R, Scotti R, Morazzoni F. J. Am. Chem. Soc., 2011, 133: 5296-5304
[11] Balaji S, Djaoued Y, Albert A S, Bruning R, Beaudoin N, Robichaud J. J. Mater. Chem., 2011, 21: 3940-3948
[12] Su J, Feng X, Sloppy J D, Guo L, Grimes C A. Nano Lett., 2010, 11: 203-208
[13] Qin B, Chen H, Liang H, Fu L, Liu X, Qiu X, Liu S, Song R, Tang Z. J. Am. Chem. Soc., 2010, 132: 2886-2888
[14] He Y, Wu Z, Fu L, Li C, Miao Y, Cao L, Fan H, Zou B. Chem. Mater., 2003, 15: 4039-4045
[15] Fang X, Bando Y, Gautam U K, Ye C, Golberg D. J. Mater. Chem., 2008, 18: 509-522
[16] Li L, Zhang Y, Fang X, Zhai T, Liao M, Sun X, Koide Y, Bando Y, Golberg D. J. Mater. Chem., 2011, 21: 6525-6530
[17] Zhang X, Lu X, Shen Y, Han J, Yuan L, Gong L, Xu Z, Bai X, Wei M, Tong Y, Gao Y, Chen J, Zhou J, Wang Z L. Chem. Commun., 2011, 47: 5804-5806
[18] Zhou J, Ding Y, Deng S Z, Gong L, Xu N S, Wang Z L. Adv. Mater., 2005, 17: 2107-2110
[19] Breedon M, Spizzirri P, Taylor M, du Plessis J, McCulloch D, Zhu J, Yu L, Hu Z, Rix C, Wlodarski W, Kalantar-Zadeh K. Cryst. Growth Des., 2010, 10: 430-439
[20] Manthiram K, Alivisatos A P. J. Am. Chem. Soc., 2012, 134: 3995-3998
[21] Yella A, Tahir M N, Meuer S, Zentel R, Berger R D, Panthöfer M, Tremel W. J. Am. Chem. Soc., 2009, 131: 17566-17575
[22] Yoshimura M, Byrappa K. J. Mater. Sci., 2008, 43: 2085-2103
[23] Jiao Z, Wang X, Wang J, Ke L, Demir H V, Koh T W, Sun X W. Chem. Commun., 2012, 48: 365-367
[24] Shibuya M, Miyauchi M. Adv. Mater., 2009, 21: 1373-1376
[25] Zhang H, Huang C, Tao R, Zhao Y, Chen S, Sun Z, Liu Z. J. Mater. Chem., 2012, 22: 3354-3359
[26] Yang J, Jiao L, Zhao Q, Wang Q, Gao H, Huan Q, Zheng W, Wang Y, Yuan H. J. Mater. Chem., 2012, 22: 3699-3701
[27] Xi G, Ouyang S, Li P, Ye J, Ma Q, Su N, Bai H, Wang C. Angew. Chem. Int. Ed., 2012, 51: 2395-2399
[28] Le Houx N, Pourroy G, Camerel F, Comet M, Spitzer D. J. Phys. Chem. C, 2009, 114: 155-161
[29] Wang J, Khoo E, Lee P S, Ma J. J. Phys. Chem. C, 2008, 112: 14306-14312
[30] Gu Z, Li H, Zhai T, Yang W, Xia Y, Ma Y, Yao J. J. Solid State Chem., 2007, 180: 98-105
[31] Song X, Zhao Y, Zheng Y. Mater. Lett., 2006, 60: 3405-3408
[32] Shiba F, Yokoyama M, Mita Y, Yamakawa T, Okawa Y. Mater. Lett., 2007, 61: 1778-1780
[33] Chen D, Ye J. Adv. Funct. Mater., 2008, 18: 1922-1928
[34] Zhang J, Tu J P, Xia X H, Wang X l, Gu C D. J. Mater. Chem., 2011, 21: 5492-5498
[35] Zheng H, Ou J Z, Strano M S, Kaner R B, Mitchell A, Kalantar-Zadeh K. Adv. Funct. Mater., 2011, 21: 2175-2196
[36] Balaji S, Djaoued Y, Albert A S B, Ferguson R Z, Br黱ing R. Chem. Mater., 2009, 21: 1381-1389
[37] Rem kar M, Kovac J, Vir ek M, Mrak M, Jesih A, Seabaugh A. Adv. Funct. Mater., 2007, 17: 1974-1978
[38] Harks P P R M L, Houweling Z S, de Jong M, Kuang Y, Geus J W, Schropp R E I. Chem. Vap. Deposition, 2012, 18: 70-75
[39] Al-Sharab J F, Sadangi R K, Shukla V, Tse S D, Kear B H. Cryst. Growth Des., 2009, 9: 4680-4684
[40] Guo C, Yin S, Huang Y, Dong Q, Sato T. Langmuir, 2011, 27: 12172-12178
[41] Paur F. Am. Mineral., 1944, 29: 192-210
[42] Zhou L, Zou J, Yu M, Lu P, Wei J, Qian Y, Wang Y, Yu C. Cryst. Growth Des., 2008, 8: 3993-3998
[43] Lee C Y, Kim S J, Hwang I S, Lee J H. Sens. Actuators B, 2009, 142: 236-242
[44] Sun Q, Luo J, Xie Z, Wang J, Su X. Mater. Lett., 2008, 62: 2992-2994
[45] Su X T, Xiao F, Lin J L, Jian J K, Li Y N, Sun Q J, Wang J D. Mater. Charact., 2010, 61: 831-834
[46] Song X C, Zheng Y F, Yang E, Wang Y. Mater. Lett., 2007, 61: 3904-3908
[47] Li Y, Su X, Jian J, Wang J. Ceram. Int., 2010, 36: 1917-1920
[48] Li X L, Liu J F, Li Y D. Inorg. Chem., 2003, 42: 921-924
[49] Ha J H, Muralidharan P, Kim D K. J. Alloys Compd., 2009, 475: 446-451
[50] Wang J, Khoo E, Lee P S, Ma J. J. Phys. Chem. C, 2009, 113: 9655-9658
[51] Gu Z, Ma Y, Yang W, Zhang G, Yao J. Chem. Commun., 2005, 3597-3599
[52] Zhu J, Wang S, Xie S, Li H. Chem. Commun., 2011, 47: 4403-4405
[53] Wang J, Lee P S, Ma J. Cryst. Growth Des., 2009, 9: 2293-2299
[54] Lou X W, Zeng H C. Inorg. Chem., 2003, 42: 6169-6171
[55] Choi H G, Jung Y H, Kim D K. J. Am. Ceram. Soc., 2005, 88: 1684-1686
[56] Guo C, Yin S, Yan M, Kobayashi M, Kakihana M, Sato T. Inorg. Chem., 2012, 51: 4763-4771
[57] Phuruangrat A, Ham D J, Hong S J, Thongtem S, Lee J S. J. Mater. Chem., 2010, 20: 1683-1690
[58] Sungpanich J, Thongtem T, Thongtem S. Ceram. Int., 2012, 38: 1051-1055
[59] Ma J, Zhang J, Wang S, Wang T, Lian J, Duan X, Zheng W. J. Phys. Chem. C, 2011, 115: 18157-18163
[60] Su X, Xiao F, Li Y, Jian J, Sun Q, Wang J. Mater. Lett., 2010, 64: 1232-1234
[61] Su X, Li Y, Jian J, Wang J. Mater. Res. Bull., 2010, 45: 1960-1963
[62] Cho S, Jang J W, Jung S H, Lee B R, Oh E, Lee K H. Langmuir, 2009, 25: 3825-3831
[63] Gao X, Yang C, Xiao F, Zhu Y, Wang J, Su X. Mater. Lett., 2012, 84: 151-153
[64] Yu J, Qi L. J. Hazard. Mater., 2009, 169: 221-227
[65] Gu Z, Zhai T, Gao B, Sheng X, Wang Y, Fu H, Ma Y, Yao J. J. Phys. Chem. B, 2006, 110: 23829-23836
[66] Liu Z, Miyauchi M, Yamazaki T, Shen Y. Sens. Actuators B, 2009, 140: 514-519
[67] Jeon S, Yong K. Chem. Commun., 2009, 7042-7044
[68] Xi G, Yue B, Cao J, Ye J. Chem. Eur. J., 2011, 17: 5145-5154
[69] Yu J, Yu H, Guo H, Li M, Mann S. Small, 2008, 4: 87-91
[70] Yu J, Qi L, Cheng B, Zhao X. J. Hazard. Mater., 2008, 160: 621-628
[71] Ma B, Guo J, Dai W L, Fan K. Appl. Catal. B, 2012, 123/124: 193-199
[72] Zhao Z G, Miyauchi M. J. Phys. Chem. C, 2009, 113: 6539-6546
[73] Xiang Q, Meng G F, Zhao H B, Zhang Y, Li H, Ma W J, Xu J Q. J. Phys. Chem. C, 2010, 114: 2049-2055
[74] Wang P, Huang B, Qin X, Zhang X, Dai Y, Whangbo M H. Inorganic Chemistry, 2009, 48: 10697-10702
[75] An X, Yu J C, Wang Y, Hu Y, Yu X, Zhang G. J. Mater. Chem., 2012, 22: 8525-8531
[76] Smith W, Wolcott A, Fitzmorris R C, Zhang J Z, Zhao Y. J. Mater. Chem., 2011, 21: 10792-10800
[77] Nah Y C, Ghicov A, Kim D, Berger S, Schmuki P. J. Am. Chem. Soc., 2008, 130: 16154-16155
[78] Zhu Y, Su X, Yang C, Gao X, Xiao F, Wang J. J. Mater. Chem., 2012, 22: 13914-13917
[79] Mo R F, Jin G Q, Guo X Y. Mater. Lett., 2007, 61: 3787-3790
[80] Zhao Y M, Zhu Y Q. Sens. Actuators B, 2009, 137: 27-31
[81] Wang J, Lee P S, Ma J. J. Cryst. Growth, 2009, 311: 316-319
[82] Yella A, Gautam U K, Mugnaioli E, Panthöfer M, Bando Y, Golberg D, Kolb U, Tremel W. CrystEngComm, 2011, 13: 4074-4081
[83] He X, Hu C, Yi Q, Wang X, Hua H, Li X. Catal. Lett., 2012, 142: 637-645
[84] Ma D K, Jiang J L, Huang J R, Yang D P, Cai P, Zhang L J, Huang S M. Chem. Commun., 2010, 46: 4556-4558

[1] Lijuan He, Delong Kong, Caihong Xu, Chaoshuai Lei, Wenjing Li, Yingmin Zhao. 3D Printing of Polymer Precursor Derived High Performance Ceramics [J]. Progress in Chemistry, 2020, 32(12): 1978-1989.
[2] Lingli Zhou, Ruigang Xie, Linjiang Wang. Application of Layered Double Hydroxides in Electrocatalysis [J]. Progress in Chemistry, 2019, 31(2/3): 275-282.
[3] Zhang Hui, Zhou Yajing, Song Xiaokai. Advanced Functional Materials Derived from Metal-Organic Frameworks [J]. Progress in Chemistry, 2015, 27(2/3): 174-191.
[4] Kou Long, Wang Youhe, Peng Peng, Yan Zifeng. Synthesis of Mesoporous Zeolite [J]. Progress in Chemistry, 2014, 26(04): 522-528.
[5] Lai Qingxue, Zhang Xiaogang, Liang Yanyu. Synthesis and Application of Nitrogen-Containing Carbon Nanomaterials by Ionic Liquids as Novel Precursors [J]. Progress in Chemistry, 2013, 25(10): 1703-1712.
[6] Lü Xiaoping, Tan Xiangshi*. Metals Homeostasis and Related Proteins in Alzheimer’s Disease [J]. Progress in Chemistry, 2013, 25(04): 511-519.
[7] Zhou Shu Fang Xiaodong Deng Zanhong Li Da. Preparation of Delafossite-Type Oxides by Hydrothermal Method [J]. Progress in Chemistry, 2010, 22(0203): 352-357.
[8] Lu Yuhua Song Feijie Jia Xueshun Liu Yuanhong. Transition Metal-Catalyzed Synthesis of Furan Derivatives [J]. Progress in Chemistry, 2010, 22(01): 58-70.
[9] Kong Jie**, Zhang Guobin, Liu Qin. Molecular Design and Synthesis of Polyborosilazane Precurosors for SiBCN Ceramics [J]. Progress in Chemistry, 2007, 19(11): 1791-1799.
[10] Kong Xiangrong,Liu Junliang,Zeng Yanwei*. Advances in Research of Metallorganic Precursors for Ferroelectric Oxide Thin Films via MOCVD [J]. Progress in Chemistry, 2005, 17(05): 839-846.
[11] Su Xintai,Yan Qingzhi,Ge Changchun*. Recent Developments of Low-Temperature Combustion Synthesis of Ultrafine Ceramic Powder [J]. Progress in Chemistry, 2005, 17(03): 430-436.
[12] Wang Shutao,Zhang Zude*. Preparation of Titanium Nitride by Chemical Vapor Deposition [J]. Progress in Chemistry, 2003, 15(05): 374-.