中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC120647 Previous Articles   Next Articles

• Review •

Advances in Preparation of Graphene Quantum Dots

Wang Jiaojiao, Feng Miao, Zhan Hongbing*   

  1. College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
  • Received: Revised: Online: Published:
PDF ( 4376 ) Cited
Export

EndNote

Ris

BibTeX

As the latest member of graphene families, graphene quantum dots(GQDs)have excellent performances conferred by graphene. Besides, it exhibits additional marvelous properties due to quantum confinement and edge effects. So it has attracted more and more attention from scientists in aspects of chemistry, physical, materials, biology and so on. In the past two and three years, significant advances in both the experimental and theoretical fronts have been made for this new sort of zero-dimensional materials. In this paper, we introduce the synthetic methods of GQDs, focusing on two main approaches(top-down and bottom-up). Top-down approach consists of hydrothermal methods, electrochemical strategies and chemical exfoliation of carbon fibers. Bottom-up method mainly involves solution chemistry methods, ultrasonic and microwave preparation and controlled pyrolysis of polycyclic aromatic hydrocarbons. We also give some brief introduce to some special methods such as electro-beam lithography and ruthenium-catalyzed C60 transformation which need harsh preparation conditions, and we make a perspect for the applications of GQDs in the future. Contents
1 Introduction
2 Top-down approach
2.1 Hydrothermal methods
2.2 Electrochemical strategies
2.3 Chemical exfoliation of carbon fibers
3 Bottom-up method
3.1 Solution chemistry methods
3.2 Ultrasonic and microwave methods
3.3 Controlled pyrolysis of polycyclic aromatic hydrocarbons
4 Other methods
4.1 Electron-beam lithography methods
4.2 Ruthenium-catalyzed C60 methods
5 Applications
6 Conclusion and perspectives

CLC Number: 

[1] Geim A K. Science, 2009, 324(5934): 1530-1534
[2] Shen J, Zhu Y, Yang X, Li C. Chem. Commun. (Camb), 2012, 48(31): 3686-3699
[3] Qu L, Zhang Z, Zhang J, Chen N. Energy Environ. Sci., 2012, DOI: 10.1039/c2ee22982j
[4] Baker S N, Baker G A. Angewandte Chemie International Edition, 2010, 49(38): 6726-6744
[5] Pan D, Guo L, Zhang J, Xi C, Xue Q, Huang H, Li J, Zhang Z, Yu W, Chen Z, Li Z, Wu M. Journal of Materials Chemistry, 2012, 22(8): 3314-3318
[6] Pan D, Zhang J, Li Z, Wu M. Adv. Mater., 2010, 22(6): 734-738
[7] Shen J, Zhu Y, Chen C, Yang X, Li C. Chemical Communications, 2011, 47(9): 2580-2582
[8] Shen J, Zhu Y, Yang X, Zong J, Zhang J, Li C. New Journal of Chemistry, 2012, 36(1): 97-101
[9] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Nature, 2009, 458(7240): 872-876
[10] Zhou J, Booker C, Li R, Zhou X, Sham T K, Sun X, Ding Z. J. Am. Chem. Soc., 2007, 129(4): 744-745
[11] Zhao Q, Zhang Z, Huang B, Peng J, Zhang M, Pang D. Chemical Communications, 2008, (41): 5116-5118
[12] Zheng L, Chi Y, Dong Y, Lin J, Wang B. J. Am. Chem. Soc., 2009, 131(13): 4564-4565
[13] Lu J, Yang J X, Wang J, Lim A, Wang S, Loh K P. ACS Nano, 2009, 3(8): 2367-2375
[14] Zhang M, Bai L, Shang W, Xie W, Ma H, Fu Y, Fang D, Sun H, Fan L, Han M, Liu C, Yang S. Journal of Materials Chemistry, 2012, 22(15): 7461-7467
[15] Li J L, Kudin K N, Mcallister M J, Prud'Homme R K, Aksay I A, Car R. Phys. Rev. Lett., 2006, 96(17): art. no. 176101
[16] Li Y, Hu Y, Zhao Y, Shi G, Deng L, Hou Y, Qu L. Adv. Mater., 2011, 23(6): 776-780
[17] Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L. J. Am. Chem. Soc., 2012, 134(1): 15-18
[18] Qu L, Liu Y, Baek J, Dai L. ACS Nano, 2010, 4(3): 1321-1326
[19] Peng J, Gao W, Gupta B K, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany L B, Zhan X, Gao G, Vithayathil S A, Kaipparettu B A, Marti A A, Hayashi T, Zhu J, Ajayan P M. Nano Letters, 2012, 12(2): 844-849
[20] Wang J, Xin X, Lin Z. Nanoscale, 2011, 3(8): 3040-3048
[21] Mueller M L, Yan X, Dragnea B, Li L S. Nano Lett., 2011, 11(1): 56-60
[22] Liu R, Wu D, Feng X, Mullen K. J. Am. Chem. Soc., 2011, 133(39): 15221-15223
[23] Hamilton I P, Li B, Yan X, Li L S. Nano Lett., 2011, 11(4): 1524-1529
[24] Mueller M L, Yan X, Mcguire J A, Li L S. Nano Lett., 2010, 10(7): 2679-2682
[25] Li L, Yan X. The Journal of Physical Chemistry Letters, 2010, 1(17): 2572-2576
[26] Yan X, Cui X, Li L S. J. Am. Chem. Soc., 2010, 132(17): 5944-5945
[27] Yan X, Cui X, Li B, Li L S. Nano Lett., 2010, 10(5): 1869-1873
[28] Wu J, Pisula W, Mullen K. Chem. Rev., 2007, 107(3): 718-747
[29] Wu J, Tomovic Z, Enkelmann V, Mullen K. J. Org. Chem., 2004, 69(16): 5179-5186
[30] Simpson C D, Brand J D, Berresheim A J, Przybilla L, Rader H J, Mullen K. Chemistry-A European Journal, 2002, 8(6): 1424-1429
[31] Dresselhaus M S, Dresselhaus G. Advances in Physics, 2002, 51(1): 1-186
[32] Zhu H, Wang X, Li Y, Wang Z, Yang F, Yang X. Chem. Commun. (Camb), 2009, (34): 5118-5120
[33] Wang X, Qu K, Xu B, Ren J, Qu X. Journal of Materials Chemistry, 2011, 21(8): 2445-2450
[34] Li H, He X, Liu Y, Huang H, Lian S, Lee S, Kang Z. Carbon, 2011, 49(2): 605-609
[35] Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng K S, Luk C M, Zeng S, Hao J, Lau S P. ACS Nano, 2012, 6(6): 5102-5110
[36] Zhuo S, Shao M, Lee S. ACS Nano, 2012, 6(2): 1059-1064
[37] Sun X, Li Y. Angewandte Chemie International Edition, 2004, 43(5): 597-601
[38] Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S, Geim A K. Science, 2008, 320(5874): 356-358
[39] Lu J, Yeo P S, Gan C K, Wu P, Loh K P. Nat. Nanotechnol., 2011, 6(4): 247-252
[40] Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, Li B, Tian L, Liu F, Hu R, Gao H, Wei H, Zhang H, Sun H, Yang B. Chem. Commun. (Camb), 2011, 47(24): 6858-6860
[41] Jing Y, Zhu Y, Yang X, Shen J, Li C. Langmuir, 2011, 27(3): 1175-1180
[42] Gupta V, Chaudhary N, Srivastava R, Sharma G D, Bhardwaj R, Chand S. J. Am. Chem. Soc., 2011, 133(26): 9960-9963
[43] Cheng H, Zhao Y, Fan Y, Xie X, Qu L, Shi G. ACS Nano, 2012, 6(3): 2237-2244
[44] Zhao J, Chen G, Zhu L, Li G. Electrochemistry Communications, 2011, 13(1): 31-33
[45] Pan D, Zhang J, Li Z, Wu C, Yan X, Wu M. Chem. Commun. (Camb), 2010, 46(21): 3681-3683
[46] Zhu S, Zhang J, Liu X, Li B, Wang X, Tang S, Meng Q, Li Y, Shi C, Hu R, Yang B. RSC Advances, 2012, 2(7): 2717-2720
[47] Sun X, Liu Z, Welsher K, Robinson J T, Goodwin A, Zaric S, Dai H. Nano Res., 2008, 1(3): 203-212
[48] Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang C H, Yang X, Lee S T. Angew Chem. Int. Ed. Engl., 2010, 49(26): 4430-4434
[49] Geng X, Niu L, Xing Z, Song R, Liu G, Sun M, Cheng G, Zhong H, Liu Z, Zhang Z, Sun L, Xu H, Lu L, Liu L. Adv. Mater., 2010, 22(5): 638-642

[1] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[2] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[3] Weiyang Lv, Ji’an Sun, Yuyuan Yao, Miao Du, Qiang Zheng. Morphology Control of Layered Double Hydroxide and Its Application in Water Remediation [J]. Progress in Chemistry, 2020, 32(12): 2049-2063.
[4] Lu Jia, Jianzhong Ma, Dangge Gao, Bin Lv. Layered Double Hydroxides/Polymer Nanocomposites [J]. Progress in Chemistry, 2018, 30(2/3): 295-303.
[5] Xiaoyan He*, Liqin Liu, Meng Wang, Caiyun Zhang, Yunlei Zhang, Minhui Wang. The Research of the Anisotropic Hydrogel's Properties and Preparation [J]. Progress in Chemistry, 2017, 29(6): 649-658.
[6] Fu Xianbiao, Yu Guipeng. Covalent Organic Frameworks Catalysts [J]. Progress in Chemistry, 2016, 28(7): 1006-1015.
[7] Zhao Fengyang, Mi Yifang, An Quanfu, Gao Congjie. Preparation and Applications of Positively Charged Polyethyleneimine Nanofiltration Membrane [J]. Progress in Chemistry, 2016, 28(4): 541-551.
[8] Xia Wen, Li Zheng, Xu Yinli, Zhuang Xupin, Jia Shiru, Zhang Jianfei. Bacterial Cellulose Based Electrode Material for Supercapacitors [J]. Progress in Chemistry, 2016, 28(11): 1682-1688.
[9] Tang Zhijiao, Li Gongke*, Hu Yuling*. Advances in Preparation and Applications in Quantitative Analysis of Nitrogen-Doped Carbon Dots [J]. Progress in Chemistry, 2016, 28(10): 1455-1461.
[10] Li Dan, Liu Yurong, Lin Baoping, Sun Ying, Yang Hong, Zhang Xueqin. Graphene/Metal Oxide Composites as Electrode Material for Supercapacitors [J]. Progress in Chemistry, 2015, 27(4): 404-415.
[11] Yao Qiuhong, Lin Liping, Zhao Tingting, Chen Xi. Advances in Preparation, Physicochemical Properties and Applications of Heteroatom-Doped Graphene Quantum Dots [J]. Progress in Chemistry, 2015, 27(11): 1523-1530.
[12] Zhang Weihong, Huang Yi, Tian Wei. Polymer-Based Hollow Microspheres:Preparation Methods and Applications [J]. Progress in Chemistry, 2013, 25(11): 1951-1961.
[13] Chu Daobao, Li Jian, Yuan Ximei, Li Zilong, Wei Xu, Wan Yong. Tin-Based Alloy Anode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2012, 24(08): 1466-1476.
[14] Tang Jingjing, Di Feng, Xu Xiao, Xiao Yinghong, Che Jianfei. Transparent Conductive Graphene Films [J]. Progress in Chemistry, 2012, 24(04): 501-511.
[15] Li Gang, Li Xiaohong, Zhang Zhijun. Preparation Methods of Copper Nanomaterials [J]. Progress in Chemistry, 2011, 23(8): 1644-1656.