中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC120636 Previous Articles   Next Articles

• Review •

Heterogeneous Reactions of NO2 on the Surface of Black Carbon

Shen Lijuan, Zhang Zefeng*   

  1. Key Laboratory for Atmospheric Physics and Environment, CMA, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Received: Revised: Online: Published:
PDF ( 1058 ) Cited
Export

EndNote

Ris

BibTeX

HONO is the main source of hydroxyl radical (OH) in the atmosphere, and is formed by the reaction of NO2 on the surface of black carbon. Therefore, the heterogeneous reactions of NO2 on the surface of black carbon have been attracted scientists in the past years. The uptake coefficients varied 7 orders of magnitude in different research groups. For assessing the importance of the heterogeneous reaction, the results are different when selecting different uptake coefficients. On the basis of a deep analysis of the reaction mechanism of NO2 with black carbon, the reasons of the discrepancy in uptake coefficients were analyzed according to reaction system, surface properties of black carbon and reaction condition. The results will provide a basis for the selection of uptake coefficients in the model. Contents
1 Introduction
2 Heterogeneous reaction mechanism of NO2 on the surface of black carbon
2.1 Reactions of NO2 on the surface of black carbon
2.2 Oxidation-reduction reactions of NO2 on the surface of black carbon
3 Uptake coefficients of NO2 on the surface of black carbon
3.1 Effects of the reaction system on uptake coefficients
3.2 Effects of the surface properties of black carbon on uptake coefficients
3.3 Effects of the reaction conditions on uptake coefficients
4 Conclusions and outlook

CLC Number: 

[1] 叶春翔(Ye C X), 李宏军(Li H J), 朱彤(Zhu T), 尚静(Shang J), 张泽锋(Zhang Z F), 赵德峰(Zhao D F). 中国科学: 化学(Scientia Sinica Chimica), 2010, 40(12): 1765-1771
[2] Liu Y J, Zhu T, Zhao D F, Zhang Z F. Atmos. Chem. Phys., 2008, 8: 7205-7215
[3] 李宏军(Li H J), 朱彤(Zhu T), 丁杰(Ding J), 陈琦(Chen Q), 徐冰烨(Xu B Y). 中国科学: 化学(Scientia Sinica Chimica), 2005, 35(6): 506-512
[4] Monge M E, D’Anna B, Mazri L, Giroir-Fendler A, Ammann M, Donaldson D J, George C. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(15): 6605-6609
[5] Stemmler K, Ammann M, Donders C. Nature, 2006, 440: 195-198
[6] Brigante M, Cazoir D, D’Anna B, George C, Donaldson D J. J. Phys. Chem. A, 2008, 112(39): 9503-9508
[7] Bejan I, Abd EI Aal Y, Barnes I, Benter T, Bohn B, Wiesen P, Kleffmann J. Phys. Chem. Chem. Phys., 2006, 8: 2028-2035
[8] Finlayson-Pitts B J. Chem. Rev., 2003, 103(12): 4801-4822
[9] Vogt R, Elliott C, Allen H C, Laux J M, Hemminger J C, Finlayson-Pitts B J. Atmos. Environ., 1996, 30(10): 1729-1737
[10] Zhang Y, Carmichael G R. J. Appl. Mete., 1999, 38: 353-366
[11] Ammann M, Kalberer M, Jost D T. Nature, 1998, 395: 157-159
[12] Khalizov A, Cruz-Quinones M, Zhang R. J. Phys. Chem. A, 2010, 114: 7516-7524
[13] Stadler D, Rossi M J. Phys. Chem. Chem. Phys., 2000, 2: 5420-5429
[14] 张泽锋(Zhang Z F), 朱彤(Zhu T), 赵德峰(Zhao D F), 李宏军(Li H J). 化学进展(Progress in Chemistry), 2009, 21: 282-287
[15] Ren X R, Harder H, Martinez M, Lesher R L, Oliger A, Simpas J B, Brune W H, Schwab J J, Demerjian K L, He Y, Zhou X L, Gao H L. Atmos. Environ., 2003, 37: 3639-3651
[16] Kleffmann J, Gavriloaiei T, Hofzumahaus A, Holland F, Koppmann R, Rupp L, Schlosser E, Siese M, Wahner A. Geophys. Res. Lett., 2005, 32: art. no. L05818. DOI: 10.1029/2005GL022524
[17] Acker K, Moller D, Wieprecht W, Meixner F X, Bohn B, Gilge S, Plass-Dulmer C, Berresheim H. Geophys. Res. Lett., 2006, 33: art. no. L02809. DOI: 10.1029/2005GL024643
[18] Zhou X L, Civerolo K, Dai H P, Huang G, Schwab J, Demerjian K. J. Geophys. Res., 2002, 107(D21): art. no. 4590. DOI: 10.1029/2001JD001539
[19] Zhou X L, Beine H J, Honrath R E, Fuentes J D, Simpson W, Shepson P B, Bottenheim J W. Geophys. Res. Lett., 2001, 28(21): 4087-4090
[20] 张泽锋(Zhang Z F), 朱彤(Zhu T), 尚静(Shang J), 张德峰(Zhang D F), 叶春翔(Ye C X). 环境科学学报(Acta Scientiae Circumstantiae), 2011, 31(10): 2073-2079
[21] Zhang Y H, Hu M, Zhong L J, Wiedensohler A, Liu S C, Andreae M O, Wang W, Fan S J. Atmos. Environ., 2008, 42: 6157-6173
[22] 唐孝炎(Tang X Y), 张远航(Zhang Y H), 邵敏(Shao M). 大气环境化学, 第2版(Atmospheric Environmental Chemistry, 2nd edition). 北京: 高等教育出版社(Beijing: Higher Education Press), 2006. 221
[23] Harwood E A, Hopkins P B, Sigurdsson S T. J. Org. Chem., 2000, 65(10): 2959-2964
[24] Arens F, Gutzwiller L, Baltensperger U, Gaggeler H, Ammann M. Environ. Sci. Technol., 2001, 35: 2191-2199
[25] Mertes S, Wahner A. J. Phys. Chem., 1995, 99(38): 14000-14006
[26] Finlayson-Pitts B J, Wingen L M, Sumner A L, Syomin D, Ramazan K A. Phys. Chem. Chem. Phys., 2003, 5(2): 223-242
[27] Gerecke A, Thielmann A, Gutzwiller L, Rossi M J. Geophys. Res. Lett., 1998, 25(13): 2453-2456
[28] Spindler G, Hesper J, Bruggemann E, Dubois R, Muller T, Herrmann H. Atmos. Environ., 2003, 37: 2643-2662
[29] Kleffmann J, Becker K H, Wiesen P. Atmos. Environ., 1998, 32(16): 2721-2729
[30] Longfellow C A, Ravishankara A R, Hanson D R. J. Geophys. Res., 1999, 104(D11): 13833-13840
[31] Borensen C, Kirchner U, Scheer V, Vogt R, Zellner R. J. Phys. Chem. A, 2000, 104(21): 5036-5045
[32] Kalberer M, Ammann M, Gaggeler H W, Baltensperger U. Atmos. Environ., 1999, 33: 2815-2822
[33] Aubin D G, Abbatt J P D. J. Phys. Chem. A, 2007, 111: 6263-6273
[34] Alfassi Z B, Huie R E, Neta P. J. Phys. Chem., 1986, 90(17): 4156-4158
[35] Saltzman B E. Anal. Chem., 1954, 26: 1948-1955
[36] Levaggi D, Kothny E L, Belsky T, de Vera E, Mueller P K. Environ. Sci. Technol., 1974, 8(4): 348-350
[37] Pryor W A, Lightsey J W. Science, 1981, 214(4519): 435-437
[38] Gutzwiller L, Arens F, Baltensperger U, Gaggeler H W, Ammann M. Environ. Sci. Technol., 2002, 36(4): 677-682
[39] Tabor K, Gutzwiller L, Rossi M J. Geophys. Res. Lett., 1993, 20(14): 1431-1434
[40] Tabor K, Gutzwiller L, Rossi M J. J. Phys. Chem., 1994, 98(24): 6172-6186
[41] Rogaski C A, Golden D M, Williams L R. Geophys. Res. Lett., 1997, 24(4): 381-384
[42] Salgado M S, Rossi M J. Int. J. Chem. Kinet., 2002, 34(11): 620-631
[43] Kalberer M, Ammann M, Arens F, Gaggeler H W, Baltensperger U. J. Geophys. Res., 1999, 104(D11): 13825-13832
[44] Kleffmann J, Becker K H, Lackhoff M, Wiesen P. Phys. Chem. Chem. Phys., 1999, 1: 5443-5450
[45] Kirchner U, Scheer V, Vogt R. J. Phys. Chem. A, 2000, 104: 8908-8915
[46] Saathoff H, Naumann K H, Riemer N, Kamm S, Mohler O, Schurath U, Vogel H, Vogel B. Geophys. Res. Lett., 2001, 28(10): 1957-1960
[47] Prince A P, Wade J L, Grassian V H, Kleiber P D, Young M A. Atmos. Environ., 2002, 36: 5729-5740
[48] Lelievre S, Bedjanian Y, Laverdet G, Le Bras G. J. Phys. Chem. A, 2004, 108(49): 10807-10817
[49] Alcala-Jornod C, van Den Bergh H, Rossi M J. Phys. Chem. Chem. Phys., 2000, 2: 5584-5593
[50] Fan J W, Zhang R Y. Environ. Chem., 2004, 1(3): 140-149
[51] Lei W F, Zhang R Y, McGivern W S, Derecskei-Kovacs A, North S W. Chem. Phys. Lett., 2000, 326: 109-114
[52] Suh I, Lei W F, Zhang R Y. J. Phys. Chem. A, 2001, 105: 6471-6478
[53] Zhang R Y, Khalizov A F, Pagels J, Zhang D, Xue H X, McMurry P H. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(30): 10291-10296
[54] Shiraiwa M, Kondo Y, Moteki N, Takegawa N, Miyazaki Y, Blake D R. Geophys. Res. Lett., 2007, 34(16): art. no. L16803. DOI: 10.1029/2007GL029819
[55] Kleffmann J, Wiesen P. Atmos. Chem. Phys., 2005, 5: 77-83
[56] Chughtai A R, Brooks M E, Smith D M. J. Geophys. Res., 1996, 101(D14): 19505-19514
[57] Lammel G, Cape J N. Chem. Soc. Rev., 1996, 25(5): 361-369
[58] Azambre B, Collura S, Trichard J M, Weber J V. Appl. Surf. Sci., 2006, 253: 2296-2303
[59] Kleffmann J, Kurtenbach R, Lorzer J, Wiesen P, Kalthoff N, Vogel B, Vogel H. Atmos. Environ., 2003, 37: 2949-2955
[60] George C, Strekowski R S, Kleffmann J, Stemmler K, Ammann M. Faraday Discuss., 2005, 130: 195-210
[61] Su H, Cheng Y F, Shao M, Gao D F, Yu Z Y, Zeng L M, Slanina J, Zhang Y H, Wiedensohler A. J. Geophys. Res., 2008, 113: D14312. DOI: 10.1029/2007JD009060

[1] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[2] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[3] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[4] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[5] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[6] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[7] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[8] Chenhui Wei, Heyun Fu, Xiaolei Qu, Dongqiang Zhu. Environmental Processes of Dissolved Black Carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052.
[9] Ming Ge, Zhenlu Li. All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials [J]. Progress in Chemistry, 2017, 29(8): 846-858.
[10] Shiying Yang, Yixuan Zhang, Di Zheng, Jia Xin. Surface Reaction Mechanism of ZVAl Applied in Water Environment:A Review [J]. Progress in Chemistry, 2017, 29(8): 879-891.
[11] Xiaojun Shen, Panli Huang, Jialong Wen, Runcang Sun. Research Status of Lignin Oxidative and Reductive Depolymerization [J]. Progress in Chemistry, 2017, 29(1): 162-178.
[12] Yao Zhen, Dai Boen, Yu Yunfei, Cao Kun. Thiol-Epoxy Click Chemistry and Its Applications in Macromolecular Materials [J]. Progress in Chemistry, 2016, 28(7): 1062-1069.
[13] Liu Ying, He Hongping, Wu Deli, Zhang Yalei. Heterogeneous Catalytic Ozonation Reaction Mechanism [J]. Progress in Chemistry, 2016, 28(7): 1112-1120.
[14] Zhao Yanxia, He Shenggui. Reactivity of Heteronuclear Oxide Clusters with Small Molecules [J]. Progress in Chemistry, 2016, 28(4): 401-414.
[15] Hua Donglong, Zhuang Xiaoyu, Tong Dongshen, Yu Weihua, Zhou Chunhui. Catalytic Oxidehydration of Glycerol to Acrylic Acid [J]. Progress in Chemistry, 2016, 28(2/3): 375-390.